

A SURVEY OF THE HERPETOFAUNA OF BRUNEAU RESOURCE AREA, BOISE DISTRICT, WITH FOCUS ON THE SPOTTED FROG, <u>RANA PRETIOSA</u>

oy James C. Munger Lisa Heberger Dia Logan Wade Peterson Laura Mealy Martha Cauglin

84.2 .L352 no.94-7

IDAHO BUREAU OF LAND MANAGEMENT TECHNICAL BULLETIN NO. 94-7 JULY 1994

BLM LIBRARY SC-653, BLDG, 50 DENVER FEDERAL CENTER P. O. BOX 25047 DENVER, CO 80225-0047

•

ID 880365

A SURVEY OF THE HERPETOFAUNA OF BRUNEAU RESOURCE AREA, BOISE DISTRICT, WITH FOCUS ON THE SPOTTED FROG, <u>BANA PRETIOSA</u>.

36856892

Dr. James C. Munger Lisa Heberger Dia Logan Wade Peterson Laura Mealy Martha Cauglin

April 22, 1994

Final Report from a Cooperative Challenge Cost Share Project with the Bureau of Land Management Boise District Boise District

Summary: Little is known about the distribution and abundance of reptiles and amphibians in the deserts of the intermountain West. In particular, the status of the spotted frog, Rana preticas, (presently dedrally classified as C2) is poorly known. We conducted censuses of the amphibians at potential breeding sites in the portion of the Bruneau Resource Area at the southern end of the Owyhee Mountains and collected data on potentially important habitat variables. We found adult spotted frogs at 41 sites and their larvae at 3 sites out of 204 characterized. Adult spotted frogs tended to be found at oxbows, pools, or ponds, at sites with sandy substrate, at sites with lower sagebrush cover, and at sites with hideways present. Sites with spotted frogs had significantly less evidence of grazing than did sites without spotted frogs. Larvae of the other common species of amphibian, the Pacific treefrog (<u>Pseudacris regilla</u>), were found at 37 sites, and adults at 11 sites. Two other amphibian species and ten reptile species were found as well.

INTRODUCTION.

The Boise district plans to prepare a Resource Management Plan for the Bruneau Resource Area in the mid-1990's. To allow construction of an RMP that is sensitive to the wildlife of an area, it is important to know the occurrence and status of species present in the area. At the present time, however, little is known of the occurrence in the resource area of members of two classes of vertebrates, amphibians and rebiles.

Of particular concern are the amphibians. A number of researchers have argued that amphibian populations worldwide are undergoing a decline (e.g. Freda and Dunson 1986, Weygoldt 1989, Wake and Morowitz 1990 and Wyman 1990). The hypothesized reasons for decline include: (i) global phenomena, either increased ultraviolet radiation (due to partial loss of the protective ozone layer) or climate change. (ii) pollution, in the form of pesticides or acid rain, the effects of which may be exacerbated by the relative(ii) permeable skin of amphibians, (iii) loss of breeding habitat due to human impacts, or the fragmentation of habitat, leading to local extinctions without recolonization, and (iv) the introduction of exotic species, both fishes and amphibians, (hin) prev upon larval forms.

Of the species of amphibian that occur in the Bruneau Resource Area, the spotted frog (<u>Bana</u> <u>pretiosa</u>) is the only species recognized by the federal government as being potentially in trouble. Presently, the species has a federal status of C2, meaning that listing is possibly appropriate, but that more information is needed before proper consideration can be given. The U.S. Forest Service Region 4 lists the species as "sensitive". The Bureau of Land Management does not list the species. Idaho Fish and Game list it as G5S5, meaning that it is widespread and abundant, both throughout its range and within Idaho.

The spotted frog has a distribution that covers much of western North America, from southern Alaska to central Nevada, and historically from the Pacific coast to Wyoming. It has been extirpated from west of the Cascades due to predation from introduced bullfrogs. It usually occurs in mountainous areas near slow-flowing streams and rivers, lakes, springs, and marshes. It is highly aquatic, typically occurring near cool permanent quiet water. In the more arid portions of its range, I exists as isolated populations, inhabiting higher elevation ranges. One such isolated population occurs in the Owyhee Mountains of southwestern Idaho. Because the Endangered Species Act requires protection of populations as well as species, it is important to determine the status of the Owyhee Mountains population.

The objectives of this project are (1) To provide information on the abundance and distribution of populations of spotted frogs in the southern portion of the Bruneau Resource Area, both from censuses and from museum records. (2) To provide an indication of the habitat variables important to spotted frogs, (3) to provide information on the distribution and habitat requirements of other species (amphibians and reptiles) incidentally captured in the same area, and (4) to indicate the reliability of using National Wetland Inventory maps to predict the presence of spotted frogs and other amphibians.

METHODS

DATABASE

Museum records from the Idaho State University Database were not accessed for this report; information from those records will be compiled and reported in the report from 1994's field season.

SURVEY FOR REPTILES AND AMPHIBIANS

Survey for Amphibians, During the period of 18 May to 9 July 1993, we visited a number of sites in the area of the Mud Flat Guard Station. Essentially, we visited as many sites as possible during this period, basing our decisions on which site to visit on accessibility and nearness to our base at the Guard Station. Once chosen, a given body of water (mostly streams and ponds) was surveyed by walking as much of its length or circumference as possible. At these water bodies, we searched for amphibians by carefully examining all shallow and bank areas, watching for sudden movement, turning rocks and vegetation, and dipnetted for larvae and eggs in promising areas. When adult amphibians were found, their location and species were noted. When larval amphibians were found, their location in do share taken as a sample for later identification (identification in the field is difficult).

Habitat Characterization: At most sites where amphibian adults or larvae were found, we conducted a site characterization. In practice, in those areas where relatively few amphibians were captured, each capture site was characterized. In areas where adults were abundant, we characterized a subsample of capture sites. We also characterized arbitrarily chosen sites roughly every 400 meters of stream length; these sites were later compared to capture sites.

For each water body (e.g. stream), we measured three variables: conductivity (MC-1 metry, MarkIV, Lab-Line instruments), and hardness and alkalinity, determined from Hach kits on water samples. Capture sites and random sites were characterized as follows: (i) We measured water characteristics: pH with a handheld meter; water temperature with a mercury thermometer; depth and width of the body of water; characterization as run, riffle, pool, oxbow, or pond. (ii) Substrate described by estimating the oereent coverage underwater of mud, sand, gravel, and rock. (iii) Streamside vegetation was described by

.

visual inspection) a score of 0 to 3 for each of sagebrush, grass, fort, willow, cottonwood, reed, and bare. (iv) Aquatic vegetation was described by assigning a score of 0 to 3 for each of algae, emergent vegetation, and submerged vegetation. (v) We scored whether there was a hiding place present, and whether that hideaway consisted of branches, vegetation, rocks, or an overhang. (vi) We extracted from National Wetland Inventory maps the system, the class, and the regime. (vii) We described the location to the nearest 1/64 section. (viii) We classified the weather as sunny, partly cloudy, cloudy, and rainy; and measured the air temperature with a mercury thermometer, (ix) We scored grazing as 0 (none) to 3 (heavy) based on a quick visual inspection.

<u>Statistical Analysis</u>: Statistical analyses were used to provide an initial exploratory analysis aimed at indicating which habitat variables appear to be more or less associated with the presence of spotted frogs. Because tree frogs, <u>Pseudacris ragilla</u>, were quite abundant throughout the site, we performed similar analyses on this species. The two other amphibian species encountered, Woodhouse's toad (<u>But</u> <u>woodhouse</u>) and the western toad (<u>But Dotras</u>) were only encountered a total of 3 times, not enough to warrant analyses. Analyses consisted (i) contingency table analysis (SAS PROC FREQ) for categorical habitat variables vs. presence or absence of each species, and (ii) multivariate analysis of variance (MANOVA; SAS PROC GIM) to determine if the means of non-categorical (including ranked) habitat variables (e.g. water depth) differed between sites where a species was present and sites where a different species was found. Analyses of conductivity, hardness, and temperature were conducted using separate ANOVA's because a substantial number of values for these variables are missing, and these missing values would have compromised the power of the MANOVA.

Miscellaneous Sightings. While conducting amphibian surveys or while walking or driving to sites, we occasionally encountered reptiles. The locations of these sightings were recorded.

<u>Sample Collection and Deposition</u>: An adult of each species or amphibian and reptile was collected, fixed in formalin, and preserved in ethanol for deposition in Boise State University's Vertebrate Museum. Additional specimens were preserved if they were taken from greater than 10 miles from the sites of other specimens of the same species.

RESULTS

We characterized a total of 204 sites. Of these, 103 were random sites, 41 were at <u>Bana preliosa</u> adult sites, 3 were at <u>B. pretiosa</u> larval sites, 12 were at <u>Pseudactis regilia</u> adult sites, 37 were at <u>P. regilia</u> larval sites, 11 was at a <u>Bufo yoodhouse</u> adult site, 1 at a <u>Bufo boreas</u> adult site, and 1 at <u>Bufo</u> (species not identified) larval site. Twelve of the random sites were dry, and are excluded from the analysis presented here. Examination of the output indicates very little effect of this exclusion on the trends presented below.

Spotted frogs were observed in the following drainages: Rock Creek, Camas Creek, Deep Creek, Camel Creek, Hurryback Creek, Stoneman Creek, Pole Creek, Slack Creek, and in two ponds and one reservoir. Another possible sighting was made at Dry Creek. Sites at which spotted frogs and the other two amphibian species were observed are marked on the accompanying QUADRANGLE MAPS. The SITE NOTES give a description of the sites. APPENDIXES I AND II give the complete data set for all variables measured at the 204 sites.

SPOTTED FROGS

<u>National Wetland Inventory Classification</u>. Spotted frog larvae were found at only three sites, and these sites tended to be the type at which adults were most common. All larvae were found in palustrine systems; adults were found significantly more than expected in palustrine systems, but they also occurred

in riverine systems. Larvae were either in emergent or shrubscrub class, and adults were found significantly more than expected in the shrubscrub class with fewer than expected in emergent class. Larvae were all in seasonally flooded regime, and adults were found significantly more than expected in seasonally flooded but also in permanently flooded and temporarily flooded (Table 1).

<u>Water body, characteristics</u>. Adult spotted frogs were found substantially more than expected in calm water: oxbows and pools. They did occur, albeit at lower than expected frequencies, in all water types, including runs and ripples. Larvae were found in slow water: one site each was found in pond, pool, and oxbow. No differences between frog sites and non-frog sites were found with regards depth or width of the water body (Table 1). No differences in water chemistry characteristics were found. However, water temperatures at sites at which spotted frog larvae were found were significantly warmer than at random sites (Table 4).

Substrate and vegetation. Sites with adult spotted frogs had marginally significantly more sand and less gravel than did sites without adults, but adults were found in a wide variely of substrate types. In contrast, all three larval sites had 100% mud as a substrate. Sites with adult spotted frogs had significantly less sagebrush cover and marginally less forb cover than did sites without adults. No patterns were obvious with regards larvae. Aquaic vegetation did not differ between sites with frogs and sites without frogs. Sites with hideaways had a higher probability of having frogs than did sites without hideaways; all sites with larvae present had hideaways present (Tables 1, 2, and 3).

Grazing. Sites with adult spotted frogs had a significantly lower rating for evidence of grazing (average rating 0.769 on a scale of 3) than did sites without adults (average rating 1.262). Larvae were found in a sites with ratings of 0, 1, and 2. The average rating for sites without spotted frog larvae was 1.162 (Tables 2 and 3, Figure 1).

TREEFROGS

Treefrog adults were found at only 11 sites, giving relatively little power for answering questions regarding their location. Larvae, however, were found at 37 sites.

National Wetland Inventory Classification. Treefrog adults and larvae were found in both palustrine and riverine systems, with no real pattern. Adults were found throughout the various classes, but larvae were found significantly more than expected in emergent and unconsolidated bottom classes, and less in the shrubscrub class. Both adults and larvae were found in a wide variety of regimes in approximately expected frequencies (Table 1).

<u>Water body characteristics</u>. Treefrog adults were never found in oxbows, but were found significantly more than expected near pools, runs, and ponds. Larvae, on the other hand, were found significantly more in oxbows, ponds, and pools than expected. Interestingly, they were recorded to occur in runs as well, although at lower than expected frequencies (Table 1). No water chemistry variables were significant. However, sites with treefrog larvae had warmer water temperatures than did random sites (Table 4).

Substrate and vegetation. Treefrog adults exhibited no significant trends with regards substrate or vegetation. Sites where larvae were found were significantly wider, and with significantly more mud and less gravel substrate than were sites without larvae. In addition, sites with larvae had significantly more reed cover, marginally more forb cover, and significantly more emergent vegetation, submerged vecetation, and aloae than idd sites without treefroa larvae (Tables). 2, and 3).

Grazing. No significant difference existed between sites with adults or larvae and sites without adults or larvae (Tables 2 and 3). •

MISCELLANEOUS SIGHTINGS

During our field work, we encountered individuals of 5 lizard species: Sideblotched lizard (<u>Lizard Lizard (Lizard Lizard Contention</u>), Western whiptail lizard (<u>Contention</u>), sagebrush lizard (<u>Sceloporus graciosus</u>), short-homed lizard (<u>Phroneosima douglass</u>), and western fence lizard (<u>Sceloporus cocidentails</u>). We also encountered 5 snake species: Western rattlesnake (<u>Crotalus viridus</u>), western terrestrial garter snake (<u>Tharmophis alegans</u>), striped withipnake (<u>Masticophis taeniatus</u>), racer (<u>Coluber constrictor</u>), and gopher snake (<u>Phroneobic catenifie</u>)

DISCUSSION

HABITAT REQUIREMENTS OF SPOTTED FROGS.

Although we found no set of parameters that clearly define the habitat requirements of spotted frogs, we did find that adult spotted frogs tended to be found in situations with slow water, and were especially prevalent in the oxbows of streams. These sites were typically in sandy areas, with relatively little vegetation, and with some sort of hideaway. Several adults were typically found together in ponds and oxbows: those encountered on stream banks were typically founds ingly.

Given the large number of sites at which adult frogs were found, it is surprising how few breeding sites were found. It is unclear whether they were breeding at sites undiscovered by us, whether they had failed to breed for some environmental reason (e.g. cool temperatures), or whether they had attempted to breed but had failed because of egg death due to some environmental factor. Two things can be said about threeding sites (besides their rarity); all three sites were found in slow water situations, and all three had a mud substrate. In addition, the water temperature was quite warm at larval sites. It is our hope that during the summer of 1994 we will be able to find and describe more breeding sites.

NATIONAL WETLAND INVENTORY MAPS AS PREDICTORS OF AMPHIBIAN PRESENCE.

We found several significant associations of the presence of frogs with one or more NWI variables. On the one hand, this gives some indication that NWI maps could be used to identify areas that are more likely to harbor amphibians: according to our analysis, higher than expected numbers of sites with palustrine regime, shrubscrub class, and seasonally flooded regime held adult spotted frogs. On the other hand, however, such generalizations ignore the possibility that other areas might be timportant for larvae. In addition, it should be noted that these trends cannot be used to predict the presence of frogs. For example, frogs were found with more than expected frequency at sites with C (seasonally flooded) regime. However, only 33 of 134 C-regime sites sampled had adult spotted frogs.

DIFFERENCES BETWEEN SPOTTED FROGS AND TREEFROGS

The most striking difference between these species is the relative proportions of sites with larvae to sites with adults. Three of 44 sites with spotted frogs held farvae. Thirty-seven of 49 sites with treefrogs held larvae. We can speculate as to 3 possible reasons for this: (i) Treefrogs appear to be much more opportunistic in their choice of breeding sites. They were found in a wide variety of habitat types, although sites with larvae did tend to have more aqualic vegetation and mud substrate than did sites without larvae. (ii) Adult treefrogs are undoubtedly more difficult to find, since they are quite terrestrial and may be hiding in nearby tocks or vegetation. Spotted frogs, in contrast, were often seen in water, where they could easily be detected and captured. (iii) Spotted frog eggs may be more susceptible to environmental damage than are treefrog eggs as evidenced by a recent study by Blaustein et al. (1994) that found that eggs of another Rana species are more susceptible to UV radiation than are treefrog eggs. This study found that sites with adult spotted frogs had ratings for grazing pressure that were significantly lower than sites without adult spotted frogs. This trend was noted by workers in the field. This result does provide preliminary evidence that grazing may degrade the habitat in a way that makes it less favorable for spotted frogs. Before such a conclusion is made, however, further confirmatory data should be gathered and other possible explanations, such as that cattle may not have had access to areas where spotted frogs are most common, should be ruled out.

STATUS OF THE SPOTTED FROG

Our general impression is that although the spotted frog can be common in some areas, these areas are fairly limited, apparently to certain permanent water bodies. The other species of amphibian common to the area was much more wide spread, occupying temporary as well as permanent water bodies. As mentioned above, the rarity of breeding sites for spotted frogs is troubling. More study in needed to determine whether these sites are indeed rare, and if so, to determine the causes of this rarity.

LITERATURE CITED

- Blaustein, A. R., P. D. Hoffman, D. G. Hotkit, J. M. Klesecker, S. C. Walls, and J. B. Hays. 1994. UV repair and resistance to solar UV-B in amphibian eggs: A link to population declines? Proceedings of the National Academy of Science 91: 1791-1795
- Freda, J. and W. A. Dunson, 1986. Effects of low pH and other chemical variables on the local distribution of amphibians. Copeia 1986:454-466.
- Jones, K. B. 1986. Amphibians and Reptiles. In Cooperrider, A., R. Boyd, and H. Stuart (eds.) Inventory and monitoring of wildlife habitat. U.S. Dept. Inter., Bur. Land Manage. Service Center. Derver, CO
- Karmes, D. R. 1986. Field Herpetology: methods for the study of reptiles and amphibians in Minnesota. Occas. Paper #18, James Ford Bell Mus. of Nat. Hist., Univ. of Minn., Minn.
- Wake, D. B. and H. H. Morowitz. 1990. Declining amphibian populations--a global phenomenon? Report of Workshop, Natural Research Council, Irvine, CA.
- Weygoldt, P. 1989. Changes in the composition of mountain stream frog communities in the Atlantic mountains of Brazil: frogs as Indicators of environmental deteriorations? Studies on Neotropical Fauna and Environment 243:249-255.

Wyman, R. 1990. What's happening to the amphibians? Conserv. Biol. 4:350-352

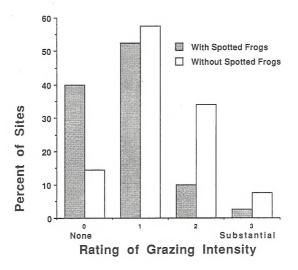


Figure 1. Relative grazing intensity at 40 sites at which spotted frog larvae and/or adults were found and at 132 sites at which neither spotted frog adults nor spotted frog larvae were found. Table 1. Contingency table analysis of the association of presence of frogs with categorical environmental variables. Analysis is performed separately for each age class (larva or adult) for each species (spotted frog or treefrog). The N and Y on the left side of each contingency table refer to the presence (Y) or absence (N) of that species/life stage. The numbers in each box refer are the observed number of sites in that cell (above) and the expected number of sites in that cell (below), based on independence of presence and the environmental parameter. Statistical analysis is the G-test (Likelihood Ratio X') of SAS Proc PREQ. Statistical analyses were not performed on Spotted frog larvae due to low sample sizes.

SPOTTED FROGS

Spotted Frog Larvae by NWI System

1	P	IR3	IR4	1	Total
N(absent) 				<observed <expected< td=""><td>185</td></expected<></observed 	185
Y(present)	3 2.4096	0.191	0 0 5 0.3989	1	3
Total	151	12	2 25	-+	188

Spotted Frog Larvae by NWI Class

	IEM	IFO	SB	ISS	IUB	US I	Total
N	45 46.25		22			2 1.9681	185
Y	2 0.75	0.0479	0.3511	1 1.5638	0.2553	0 0.0319	3
Total	47	3	22	98	16	2	188

Spotted Frog Larvae by NWI Regime

	IA	IB	IC	IF	IH I	Total
N	21 20.665	2.9521	131 131.86		13 12.793	185
Y	0 0.3351	0.0479	2.1383	0.2713	0 0 1	3
Total	21	3	134	17	13	188

Spotted Frog Larvae by Weather

	CLOUDY	PCLOUD	RAINY	SUNNY	Total
N	53 53.156	9 8.8594	8 7.875	119 119.11	189
Y	1 0.8438	0.1406	0.125	2 1.8906	3
Total	54	-+9	8	121	192

Spotted Frog Larvae by Water Body Type

	Oxbow	Pond	Pool	Riffle	Run I	Total
N	34 34.453			36 35.438		189
Y	0.5469	0.2031	1 0.4688	0.5625	0 1.2188	3
Total	35	13	30	36	78	192

Spotted Frog Larvae by Presence of Hiding Place

	N	IX I	Total
N	53 52.025	107 107.98	160
Y	0.9755	3 2.0245	3
Total	53	110	163

Spotted Frog Adults by NWI System

	11	Ρ			F	13		F	84		1	Total
N		1:	11		1	9.3	7 83	1	19	24		147
Y	+-	3:		85	1	2.6	5	1	5.4	1521	L	41
Total	+-		15	51	-+-		12	+-		25	5	188
G-test	đf	-	2	G	=	8.9	93		P	-	0.0	011

Spotted Frog Adults by NWI Class

	EM	FO	SB I	SS	UB	IUS	Total
N	39 36.75	2.3457	22 17.202			1.5638	+ 147
Y	8 10.25	0.6543		26 21.372			+ 41
Total	47	3	22	98	16	2	+ 188
G-test	df = 5 G	= 16.982	P = 0.	005			

Spotted Frog Adults by NWI Regime

	A	IB	IC	F	IH I	Total
N	1 19			17 13.293	7	147
Y	4.5798		33 29.223		6 2.8351	41
Total	+22	. 3	134	17	13	188
G-test	df = 4	= 16.451	P =	0.002		

Spotted Frog Adults by Weather

	CLOUDY	PCLOUD	RAINY	SUNNY	Total
N		8 8 9 7.0781	8 6.2917	92 95.161	151
Ŷ	11.53	L 1.9219	0 1.7083	29 25.839	41
Total	+5	1 9	-+8	121	192
G-test	df = 3 (3 = 5.005	P =	0.171	

Spotted Frog Adults by Water Body Type

	10	0x1	voc	7	13	Pond	11	Pool	Riffl	Ð	Run	L	Total
N	+-	2'						18 23.594			73 61.344		151
Y											5 1 16.656		41
Total	+			35	-+-	13	-+-	30	+	36	78	-+	192
G-test	đf	=	4	G	=	54.209		P = 0	0.000				

.

,

Spotted Frog Adults by Presence of Hiding Place

	I N	IY I	Total
N	50 43.571	84 90.429	134
Y	3 9.4294	26 19.571	29
Total	+53	110	163
G-test	df = 1 G	= 9.274	P = 0.002

TREEFROGS

Treefrog Larvae by NWI System

] P]R3]R4]	Total
N] 9.5745] 19]] 19.947]	150
Y] 28] 30.521] 4] 2.4255] 6]] 5.0532]	38
Total	151	12	25	188
G-test	df = 2	G = 1.607	P =	0.448

Treefrog Larvae by NWI Class

] EM]F0]SB]SS	JUB	JUS	Total
N] 31] 37.5] 17] 17.553] 1.5957	150
Y] 0.6064] 5] 4.4468] 10] 19.809] 1] 0.4043	38
Total	47	3	22	98	16	2	188
G-test	df = 5	G =16.856	5 P =	0.005			

Treefrog Larvae by NWI Regime

	JA]B	1C] F]H]	Total
N] 16.755] 3] 2.3936] 108] 106.91] 13] 13.564] 10]] 10.372]	150
Y] 3]] 2.6277]	38
Total	21	3	134	17	13	188
G-test	df = 4	G = 1.74	7 P =	0.782		

Treefrog Larvae by Weather

]CLO	ן צענ	PCI	OUD	RAINY]5	UNNY	1	Total
N]] 4:	38] 2.75]	7	8 .125] 6.3333]	100 95.792	1	152
Y]] 1:	16] 1.25]	1	.875	2] 1.6667	1	21 25.208	1	40
Total	+	54		9	8	-+-	121	+	192
G-test	df = 3	3 0	; =	3.924	P =	0	.270		

Treefrog Larvae by Water Body Type

] OXBO] POND] POOL]RIFF]RUN]	Total
N] 22] 27.708] 4] 10.292] 18] 23.75] 36] 28.5] 72]] 61.75]	152
Y] 13] 7.2917] 9] 2.7083] 12] 6.25] 0] 7.5] 6]] 16.25]	40
Total	35	13	30	36	78	192
G-test	df = 4	G =51.59	4 P =	0.000		

Treefrog Larvae by Presence of Hiding Place

] N]A]	Total	
N] 45] 40.319] 79]] 83.681]	124	
Y] 12.681] 31]] 26.319]	39	
Total	+53	110	163	
G-test	df = 1	G = 3.569	P =	0.059

 Treefrog Adults by
 NWI System

 JP
 JR3
 JR4
] Total

 N
 1
 143
 1
 2
 2.3
 178

N	142.97	11.362	23.67]	170
Y] 8.0319] 0]] 0.6383]	2] 1.3298]	10
Total	151	12	25	188
G-test	df = 2	G = 1.623	P = 0	.444

Treefrog Adults by NWI Class

] EM] F(5 J	SB]SS	JUB	JUS] Total
N]]	45 44.5	1	3] 2.8404]	21 20.83] 92] 92.787] 15] 15.149] 2] 1.8936] 178]
Y	1	2.5]	0] 0.1596]	1.1702] 5.2128] 0.1064] 10]
Total	+	47	+-	3	22	98	16	2	188
G-test	df =	5	G	= 0.833	P =	0.975			

Treefrog Adults by NWI Regime

] A [] B)C]F]H]	Total
N] 1] 19.88	9] 3] 2.840	3] 126 4] 126.87] 17] 16.096] 13]] 12.309]	178
Y]] 1.11	2] (7] 0.159	0] 8 6] 7.1277] 0.9043] 0]] 0.6915]	10
Total	2	1 :	3 134	17	13	188
G-test	df = 4	G = 4.3	20 P =	0.364		

Treefrog Adults by Weather

	1	CLO	DUDY]]	PCI	LOUD]R	AINY]	SUNNY	1	Total
N]	50	50 .906]	8	9 4844	1	7 7.5417	1	115 114.07	1	181
Y	1	3	4 .0938	1	0	0 5156]	1 0.4583		6 6.9323	1	11
Total	+		54	-+-		9	+-	8	-	121	+	192
G-test	df	=	3	G	=	1.977		P =		0.577		

Treefrog Adults by Water Body Type

] OXBO] POND] POOL]RIFF] RUN]	Total
N] 32.99	5] 9 5] 12.255] 27] 28.281] 36] 33.938] 74]] 73.531]	181
Y] 2.005	0] 4 2] 0.7448] 3] 1.7187] 2.0625] 4.4688]	11
Total	+3	5 13	30	36	78	192
G-test	df = 4	G =17.16	1 P =	0.002		

Treefrog Adults by Presence of Hiding Place

] N	14	l l	otal	
N]] 49.4	50] 23] 102	LO2] 58]	152	
Y]] 3.57	3] 67] 7.4	8] 233]	. 11	
Total	+	53	110	163	
G-test	df = 1	G = 0	.152	P =	0.697

Table 2. Results of Multivariate Analysis of Variance examining the whether transects with larval frogs differ from those without larval frogs. The statistical model used was SPOTLA TREELA = DEPTH, WIDTH, GRAZE, etc..., where SPOTLA and TREELA refer to the presence or absence of spotted frog larvae or treefrog larvae, respectively. To control for Type I error, probability values should be evaluated for significance against a Bonferroni corrected ac = 0.003. Because the overall MANOVA for Spotted frog larvae is not significant, univariate tests for that species should not be evaluated. *statistically significant; #marginally significant.

Species		Wilks' Lambo	<u>a F</u>	Num DF	Den DF	P
Spotted Frog La Treefrog Larvae		0.86148323 0.74750176		17 17	161 161	0.0925 0.0001*
		UNIVARIATE	TESTS			
Environmental			Mean			
Variable	Species	_df	Square	F	-	P
DEPTH						
	SPOTLA	1	148.67886	0.1		0.3483
	TREELA	1	115.12593	0.0	58	0.4090
	Error	177	168.09780			
WIDTH						
WIDIN	SPOTLA	1	18.54682	0.1	53	0.4271
	TREELA	î	271.02782	9.3		0.0027
	Error	177	29.27740			
GRAZE	-				.90	
	SPOTLA	1	1.12311			0.169
	TREELA	1	2.41007	4.	.09	0.044
	Error	177	0.58963			
MUD						
	SPOTLA	1	8380.02233	6.	44	0.0120
	TREELA	1	28011.51245	21.	52	0.0001
	Error	177	1301.38271			
SAND						
SAND	SPOTLA	1	812.55792	0.*	7.4	0.3894
	TREELA	1	705.20974	0.1		0.4225
	Error	177	1091.24921	0.1	55	0.422.
GRAVEL						
	SPOTLA	1	1513.01798	1.3		0.2589
	TREELA	1	12347.39018	10.	47	0.0014
	Error	177	1179.35836			
ROCK	SPOTLA	1	478.90922	0.	<i></i>	0.4258
	TREELA	1	1684.71246	2.3		0.1361
	Error	177	751.61030	2	24	0.1361
	11101	÷				
SAGE						
	SPOTLA	1	0.12253	0.:		0.6259
	TREELA	1	0.71300	1.	39	0.2404
	Error	177	0.51388			
GRASS						
	SPOTLA	1	0.77883	1.		0.2486
	TREELA	1	0.98090	1.	69	0.1956
	Error	177	0.58130			

CONTINUED) Invironmental	2	14	Mean		
Variable FORB	Species	df	Square	F	P
TORE	SPOTLA	1	1.03824	1.90	0.1703
	TREELA	1	4.00914	7.32	0.0075
	Error	177	0.54781		0.0075
REED					
	SPOTLA	1	1.84933	1.57	0.2119
	TREELA	1	18.50595	15.71	0.0001
	Error	177	1.17796		
BARE					
	SPOTLA	1	0.90353	1.12	0.2919
	TREELA	1	4.79730	5.93	0.0158
	Error	177	0.80850		
WILLOW					
	SPOTLA	1	0.00557	0.01	0.9401
	TREELA	1	3.71094	3.77	0.0536
	Error	177	0.98310		
COTTON					
	SPOTLA	1	0.43607	7.96	0.0053
	TREELA	1 .	0.01912	0.35	0.5554
	Error	177	0.05478		
EMERGE					
	SPOTLA	1	2.06823	2.85	0.0929
	TREELA	1	11.74411	16.21	0.0001
	Error	177	0.72459		
SUBMERGE					
	SPOTLA	1	0.12926	0.21	0.6462
	TREELA	1	9.41167	.39	0.0001
	Error	177	0.61140		
ALGAE					
	SPOTLA	1	0.02809	0.03	0.8629
	TREELA	1	12.41571	13.22	0.0004
	Error	177	0.93942		0.0004

Table 2 (continued) . Means and standard deviations of environmental variables analyzed by MANOVA for larval spotted frogs and larval treefrogs.

Presence of Spotted From

Spot	ted Fro	g							110
Larv	ae	DEPT	H	WID	TH	GR	AZE		100
	N	Mean	SD	Mean 2.833 0.750	SD	Mean	SD	Mean	SD
N	178	18.556	12.971	2.833	5.550	1.162	0.774	24.612	38.205
Y	2	10.500	9.192	0.750	0.353	0.500	0.707	100.000	0.000
	N	Mean	SD	Mean	SD	Mean	SD	Mean	SD
N	178	21,938	33.094	34.438	35.342	18.084	27.588	0.550	0.719
Ŷ	2	0 000	0 000	0 000	0.000	0.000	0.000	0.250	0.354
-	2	GP	ASS	Mean 34.438 0.000 FOF	B	R	EED]	BARE
	NT	Moon	CD	Mean 1.106 0.500 COT	SD.	Mean	SD	Mean	SD
N	179	1 070	0 766	1 106	0 755	1 462	1.132	1,203	0.914
Y	1/0	1.070	0.700	1.100	0.735	0.750	0 354	1 750	0 254
¥	4	0.500	0.000	0.500	0.000	0.750	0.554	1.750	IEDOE
		WILL	0w		TON	Mana	CD	Maan	IERGE CD
	N	Mean	SD	Mean	SD	Mean	SD	Mean	50
N	178	0.91910	1.001	0.0370	0.228	1.070	0.881	0.551	0.808
Y	2	0.75000	0.353	Mean 0.0370 0.5000	0.707	0.250	0.353	1.000	1.414
		A	LGAE						
	N	Mean	SD						
N	178	0.919	0.996						
Y	2	0.919 1.250	1.768						
Pres	ence of								
	Frog								
	ae	DEP	TH	WI	DTH	G	RAZE		-MUD
	N	Mean	SD	Mean	SD	Mean	SD	Mean	SD
N	146	18 11	12.25	2.22 5.30	3.69	1.10	0.79	19.13	33.75
Y	24	10 07	15 68	5 30	9.88	1.38	0.65	52.58	47.18
1	24	10.01	10.00	5.50	2100				
		CAND-		GRAVE	7	ROCK		SAG	2
		Mana Mana	CD	Mean	CD	Maan	en.	Mean	SD
N	140	22 22	22 EC	38.18 16.32	24 91	19 /3	27 76	0.58	0 77
	140	22.75	33.50	16.10	21 04	11 22	25.65	0.41	0.35
Y	34								
		CDACC		Mean 1.03 1.39		PEPD		BARE	
		GRASS		Vee-	CD	Maan	CD	Maan	CD
	N	Mean	SD	Mean	SD TO	mean	1 10	1 20	0.00
N	146	1.03	0.75	1.03	0.70	1.30	1.12	1.20	0.90
Y	34	1.20	0.81	1.39	0.90	2.10	0.92	0.00	0.05
		WILLO	w	COTTON	J	FMF	BGE	SUBMER	3E
	N	Mean	SD	Mean	SD	Mean	SD	Mean	SD
N	146	0 99	1 01	0.04	0.25	0.94	0.81	0.45	0.73
Y	34	0.50	0.00	Mean 0.04 0.02	0 17	1 57	1 00	1.04	0.94
x	24	0.61	0.00	0.02	0.17	1.57	1.00	1.04	0.01
		AL		-					
	N	Mean	SD						
N	146	0.79	0.92						
Y	34	1.47	1.14						

Table 3. Results of Multivariate Analysis of Variance examining the whether transects with adult frogs differ from those without adult frogs. The statistical model used was SPOTAD TREEAD = DEPTH, MIDTH, GRAZE, etc..., where SPOTAD and TREEAD refer to the presence or absence of spotted frog adults or treefrog adults, respectively. To control for Type I error, probability values should be evaluated for significance against a Bonferroni corrected α = 0.003. Because the overall MANOVA for treefrogs is not significant, univariate tests for that species should not be evaluated. *statistically significant, *marginally significant

Species		Wilks' Lambd	a <u>F</u>	Num DF	Den DF	P
Spotted Frog A Treefrog Adult		0.75518093 0.93419562		17 17	161 161	0.0001* 0.8316
		UNIVARIATE	TESTS			
nvironmental ariable	Species	df	Square	F		P
DEPTH	2000102		DARGE E		_	
	SPOTAD	1	48.87976	0.29		0.5902
	TREEAD	1	236.10741	1.41	(0.2373
	Error	177	167.90248			
WIDTH						
WIDTH	SPOTAD	1	0.00097	0.00	,	0.9955
	TREEAD	1	11.17224	0.36		0.5477
	Error	177	30.79398			
GRAZE	SPOTAD	1	7,29159	12.94		0.0004*
	TREEAD	1	0.50957	0.90		0.3428
	Error	177	0.56330	0.90		1.3420
MUD						
	SPOTAD	1	2923.37	1.94		0.1654
	TREEAD	1	9.22082	0.01		0.9377
	Error	177	1506.61978			
SAND						
	SPOTAD	1	8902.27201	8.48	0	.0040#
	TREEAD	1	238.93564	0.23	0.	6338
	Error	177	1049.46348			
GRAVEL						
GRAVEL	SPOTAD	1	9308.05741	7.72		0.0061#
	TREEAD	1	836.30678	0.69		0.4061
	Error	177	1206.05579			
ROCK	SPOTAD	1	3808.84857	5.13		0.0247
	TREEAD	1	131.69954	0.18		0.6741
	Error		131373.70798	0.18		.0/41
	51101		1010/01/07/00			
SAGE						
	SPOTAD	1	6.15981	12.80		0.0004*
	TREEAD	1	0.38647	0.80	1	0.3714
	Error	177	0.48130			
GRASS						
	SPOTAD	1	1.70400	2.97		0.0864
	TREEAD	1	1.48911	2.60		0.1087
	Error	177	0.57302			

FORB					
	SPOTAD	1	3.83211	6.95	0.0091#
	TREEAD	1	0.15711	0.28	0.5943
	Error	177	0.55171		
REED					
NBBD	SPOTAD	1	0.00187	0.00	0.9696
	TREEAD	1	0.09958	0.08	0.7813
	Error	177	1.28759		
BARE					
DARE	SPOTAD	1	0.79874	0.96	0.3287
	TREEAD	1	0.35408	0.43	0.5152
	Error	177	0.83263		
WILLOW					
WIDDOW	SPOTAD	1	0.67721	0.69	0.4079
	TREEAD	ī	2,99655	3.04	0.0827
	Error	177	0.98415		
COTTON					
	SPOTAD	1	0.00051	0.01	0.9245
	TREEAD	1	0.01279	0.22	0.6368
	Error	177	0.05720		
EMERGE					
	SPOTAD	1	0.20420	0.26	0.6130
	TREEAD	1	0.38568	0.48	0.4871
	Error	177	0.79523		
SUBMERGE					
	SPOTAD	1	0.06310	0.09	0.7583
	TREEAD	1	0.30158	0.45	0.5014
	Error	177	0.66463		
ALGAE					
	SPOTAD	1	2.17640	2.19	0.1405
	TREEAD	1	1.06121	1.07	0.3027
	Error	177	0.99306		

Table 3 (continued). Means and standard deviations of environmental variables analyzed by MANOVA for adult spotted frogs and adult treefrogs.

Presence of

	the set									
Spo	tted						-GRAZE		MID	
roc			TH	W1	DTH		-GRAZE		MOD-	
		Mean	SD	Mean	SE	M	lean 262 0. 769 0.	SD	Mean	SD
N		18.213	13.092	2.813	5.74	1 1.	262 0.	762	23.333	37.31
Y	39		12.521	2.799	4.72	2 0.	769 0.	706	33.103	43.46
		SA	ND	G	RAVEL		ROCK		SAG	E
	N	Mean	SD	Mean	SE) M	lean 319 28.	SD	Mean	SD
N	141	18.014	29.123	37.801	35.3	82 20.	319 28.	487	0.645	0.73
2	39	35.000	42.068	20.513	32.0	52 9.	077 21.	701	0.192	0.53
		GF	SD 29.123 42.068 ASS		FORB		REED		BAR	E
	N	Mean	SD	Mean	SI) M	fean 452 1. 462 0.	SD	Mean	SD
N	141	1.113	0.738	1,177	0.7	47 1.	452 1.	181	1.175	0.90
Y	39	0.885	0.839	0.821	0.7	21 1.	462 0.	928	1.333	0.94
-		W1	1.1.OW	C	OTTON		EMERGE		SUBMER	GE
	N	Mean	SD	Mean	ST	N N	lean 452 1. 462 0. EMERGE Iean 079 0. 000 0.	SD	Mean	SD
N	141	0 887	0.972	0.043	0.23	8 1.	079 0.	905	0.574	0.84
Y	39	1 026	1 088	0.038	0.24	1 1	000 0	835	0.526	0.70
-	35	1.020	GAE	0.050	0.24				0.020	5.70
	N									
NT	1 4 3	nean 0 070	1 017							
N Y	141	0.979	1.017 0.916							
	33	0.710	0.910							
rae	sence									
	reefi	nor								
du	Ite	DEP1	H	WTDT	H	G	RAZE	MU	D	
	N	Mean	SD	Mean	SD	Mean	SD 0.778 0.690	Mean	SD	
N	173	18 693	3.018	2.860	5.621	1.167	0.778	25.468	38,965	
Ŷ		12 857	10 139	1 571	1 618	0 857	0.690	25.000	37.527	
1	'	12.057	10.135	1.5/1	1.010	0.007	0.050	251000		
		SANI)	GRAV	EL	F	ROCK	SP	GE	
	N	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
N	173	21.878	32.912	33.670	35.358	18.086	SD 27.853	0.557	0.725	
Y		17.142	37.289	43.571	35.906	12.857	17.043	0.285	0.393	
		GR	ASS	FOR	B	F	REED	BZ	RE	
	N		SD	Mean		Mean	SD	Mean	SD	
N	173			1.106	0.763		1,140	1.217	0.905	
Y	1/5			0.928	0.449	1.571	1.140 0.838	1.000	1.080	
			LLLOW	CC	TTON		EMERGE	SUBN	IERGE	
	N		SD	Mean	SD	Mean	SD	Mean	SD	
N	173		1.005	0.043	0.242	1.052	0.897 0.636	0.572	0.824	
Y	7	0.285	0.393	0.000	0.000	1.285	0.636	0.357	0.377	
			ALGAE							
	N	Mean	SD							
		0.007	1 001							

N	173	0.907	1.001
Y	7	1.285	0.951

Table 4. Analysis of Variance tables for water guality variables. P-values should be evaluated for significance relative to an alpha $\alpha = 0.0085$ to control for Type I error. A multivariate analysis of variance is not performed because missing values would have led to exclusion of a large proportion of the samples from the analysis.

Dependent Variable: <u>Source</u> Spotted Frog Larvae Treefrog Larvae Error	df	MS 163.63949 7345.08962 6492.20688	F 0.03 1.13	P 0.8741 0.2894
Dependent Variable: <u>Source</u> Spotted Frog Adults Treefrog Adults Error	Conductivity <u>df</u> 1 1 136	MS 9193.99396 1396.59939 6465.88063	F 1.42 0.22	P 0.2352 0.6429
Dependent Variable: <u>Source</u> Spotted Frog Larvae Treefrog Larvae Error	df	MS 87.94377 281.73449 371.17141	0.24 0.76	P 0.6271 0.3849
Dependent Variable: <u>Source</u> Spotted Frog Adults Treefrog Adults Error	df	MS 687.21726 118.53557 368.70018	F 1.86 0.32	<u>P</u> 0.1740 0.5715
Dependent Variable: <u>Source</u> Spotted Frog Larvae Treefrog Larvae Error	df	MS 6.83646 1303.72674 394.22258	F 0.02 3.31	P 0.8954 0.0707
Dependent Variable: <u>Source</u> Spotted Frog Adults Treefrog Adults Error	df	MS 774.55128 4.38811 397.29927	F 1.95 0.01	P 0.1644 0.9164
Dependent Variable: <u>Source</u> Spotted Frog Larvae Treefrog Larvae Error	df	Ire <u>MS</u> 30.37503 16.16005 38.10321	P 0.80 0.42	p 0.3735 0.5160
Dependent Variable: <u>Source</u> Spotted Frog Adults Treefrog Adults Error	df	MS 0.02072 3.69394 38.40289	F 0.00 0.10	P 0.9815 0.7569

Table 4. (continued)

Dependent Variable:	Water Tempe	erature		
Source	df	MS	F	P
Spotted Frog Larvae	1	182.13128	7.14	0.0083
Treefrog Larvae	1	131.17726	5.14	0.0247
Error	162	25.51997		
Dependent Variable:				
Source	df	MS	_F	P
Spotted Frog Adults	1	0.11488	0.00	0.9484
Treefrog Adults	1	36.62034	1.34	0.2485
Error	162	27.29827		

Table 4(continued). Means and standard deviations of water quality variables.

		nductivity	
Presenta		Mean	SD
	Frog Lary		
N	136	106.602941	81.2076697
Y	3	96.333333	1.1547005
Treefrog	Larvae		
N	. 113	109.902655	84,4203941
Y	26	91.076923	58.2758427
Spotted	Frog Adu	te	
N	106	111.075472	87.7850945
Y	33	91.303030	47.3032008
Treefroo			
		100 000000	
N	131	107.328244	82.6157410
Y	8	90.875000	13.3997601
		dness	
Present?		Mean	SD
Spotted	Frog Lary	/ae	
N	171	45.8479532	19.3652276
Y	3	40.0000000	0.0000000
-	_	40.0000000	0.0000000
Treefrog			
N	137	46.4233577	20.2824622
Y	37	43.2432432	14.5399935
Spotted	Frog Adul	ts	
N	135	46.8148148	21.0419571
Ŷ	39	42.0512821	10.0471224
1	39	42.0512821	10.04/1224
Treefrog	Adults		
N	165	45,9393939	19.5341156
Y	9	42.2222222	12.0185043
-			12.0105045
Present?		inity	SD
Flesentr	<u>_N</u>	Mean	
Spotted	Frog Larv	ae	
N	171	59.2982456	20.1049876
Y	3	60.0000000	0.0000000
Treefrog	Larvae		
N	137	60.7299270	21.0613612
Y	37		
ĩ	31	54.0540541	14.0355619
Spotted	Frog Adul	ts	
N	135	60.444444	21.9179837
Ŷ	39	55.3846154	9.6916008
•	55	22.2040124	3.0310008
Treefrog			
N	165	59.2727273	20.2292844
Y	9	60.0000000	14.1421356
	-		

Present?	N	Mean	SD
Spotted 1	rog Lar	lae	
N	137	20.8744526	6,20382981
Y	3	24.0000000	1.00000000
Treefrog	Larvae		
N	109	21,1128440	6.16803440
Y	31	20.3387097	6.16899113
Spotted I	rog Adu	lts	
N	114	20.9535088	6.10070618
Y	26	20.8884615	6.50902923
Treefrog	Adults		·
N	134	20.9761194	6.24342275
Y	6	20.1666667	3.92003401
	Wa	ater Temperature	
Present?	N	Mean	SD
Spotted H	rog Lar		
N	162	15.8938272	5.0101846
Y	3	24.0000000	10.5830052
Treefrog			
N	128	15.5414063	5.05019727
Y	37	17.7702703	5.47036790
Spotted H			
	137	16.0459854	5.23400947
N Y	28	16.0178571	5.23400947

Treefrog Adults N 156 Y 9 15.9282051 18.0000000 5.15716595 6.12372436

-

Table 5. Miscellaneous species encountered during wetland surveys. Legal location is given in the order of, for example, SW 1/4 of the NE 1/4 of the SE 1/4 of Section 24.

GENUS	SPECIES	DATE	LOCATION	LEGAL LOCATION
Sceloporus		May 19,1993	rocks 10 m from deep creek	SW SW SW S3 T10S R3W
Thamnophis	elegans	May 19,1993	bank of deep creek	SE SE SE SA TIOS R3W
Sceloporus	graciosus	May 19,1993	rocks 40 m from deep creek	SW SW NE S9 T10S R3W
Uta	stansburiana		flats above deep creek	SW SE SE S4 T10S R3W
Coluber	constrictor	May 20, 1993	on flats to SW of current creek.	SW SW SW S5 T10S R3W
Thamnophis	elegans	May 20, 1993	tributary of current creek	SW S32 T9S R3W
Thamnophis	elegans		tributary of current creek	SW SW SW S31 T9S R3W
Sceloporus	occidentalis	May 20, 1993	tributary of current creek	SW SW SW S31 T9S R3W
Thamnophis	elegans	May 21 1993	poison creek	NW SW S11 T8S R1E
Thamnophis	elegans		poison creek	NW SW S11 T8S R1E
Sceloporus	occidentalie		poison creek	NW of S11 T8S R1E
Uta		May 21, 1993	portion of the	NW SE SW S2 T8S R1E
Uta		May 21, 1993		NW NE S10 T8S R1E
Pituophis	catenifer	May 21, 1993	Poison creek springs	NE NE SE S2 T8S R1E
Masticophis	taeniatus		Mud flat road.	NE of S21 T7S R2E
Coluber		May 24 1993	Near spring - wet habitat	SW NW NE S14 T8S R2W
Sceloporus	graciosus	May 25,1993		NW NW NE S14 T8S R2W
Phrynosoma	douglassi	May 25,1993	flat plateau	NW NW NE S11 T8S R2W
Thamnophis	elegans	May 25,1993		SE NE SE S26 T8S R2W
	douglassi	May 25,1993	dry sagebrush	NW NW SW S12 T8S R2W
Phrynosoma	douglassi	May 25, 1993	flat plateau	NW SE NW S12 T8S R2W
Phrynosoma	elegans	May 26,1993	up from transect 11-2 inches from rock cr	SE SE NW S23 T8S R2W
Thamnophis	draciosus	May 26,1993	east side of Rock Creek in rocks and sagebrush	
Sceloporus	graciosus	May 26,1993	east side of Rock Creek in rocks and sagebrush	
Sceloporus	graciosus	May 26,1993	east side of Rock Creek in rocks and sagebrush	
Sceloporus	elegans	June 3,1993	near mud flat rd.	S7 T10S R3W
Thamnophis		June 3,1993	on shore in reeds 10m below trans 1	SW SW SW S4 T10S R3W
Thamnophis	elegans elegans	July 7,1993	Camas creek (transect 12)	NW SE NE S25 T10S R2W
Thamnophis		July 7,1993	Oxbow next to camas creek (tansect13)	NW SE NW S25 T10S R2W
Thamnophis	elegans	July 7,1993		NW SE NW S25 T10S R2W
Thamnophis	elegans viridis	July 7,1993		SE SE NE S26 TIOS R2W
Crotalus		July 7,1995	Mud flat rd. approx. 4miles from guard station	55 55 115 560 1105 115h
Crotalus	viridis	July 7, 1995	on trail - in sagebrush	NW SW NE S9 T7S R1E
Sceloporus	graciosus	July 8,1993	on E.F. Shoofly Creek apprx. 1mile from mudflat	NN SN NE SS 175 KIE
Cnemodophorus	tigris	July 12,1993	Poison creek- approx. 3 ft. fom poison cr	NW NW NE S20 T7S R2E
Sceloporus		July 12,1993	Hackberry resv. approx. 1.5 miles from Mud flat rd	SE SE SE S28 T9S R3W
Thamnophis	elegans			SW NW SW S17 TIOS RIW
Thamnophis	elegans		in stream(Camas Creek) In slate on slope(N. Fork Castle cr.)	SE NE SW S15 T7S R2W
Sceloporus	occidentalis	June 22,1993	on large boulder in sun (E.F. Shoofly Cr.	SW NE SW S18 T8S R2E
Sceloporus	occidentalis	June 23, 1993	on rarge bourder in sun (E.F. Shoorry Cr.	56 AB 56 516 165 K2E

.

Appendix I. Locations and observed species at transects. F or R refers to Frog or random transect. ad-adults; la=larvae; Species Codes: Rp=Rana pretiosa, Pr = <u>Pseudocris regilla</u>, Bw = <u>Bufo woodhousei</u> or <u>Bufo boreas</u>. Topographic quadrangle abbreviations: SlaMt = Slack Mountain, CloMt = Clover Mountain, MbxBa = Wagon Box Basin, SnoCk = Snow Creek, RgMt = Rough Mountain, RMtNE = Rough Mountain NE, PerCa = Perjue Canyon, HUpCk = Hurry Up Creek, CrSp = Crab Springs, TriRe = Triangle Reservoir, BSpRa = Big Springs Ranch. NWI = National Wetland Inventory categories (see text).

																	e ai	nd Ad	ults	5	
+ *	an													F	Obs	erve	ed a	at Tr	anse	ct	
	ect			Loc	ati	on	bv	Sect	ion					or	Rp	Rp	Pr	Pr	Bu	Bu	
50		Location Name an	d #	1/of					RA	Date	Time	WEATHER	NWI	R	ad	la	ad	lar	ad	la	Topo
-		MAGPIE PO	1			SW			1W	18-May-93	1350	PCLOUDY	R4SBC	F	0	0	0	200	0	0	CloMt
		NCASTL CK MINE P	D 1			SE			1W	18-May-93		CLOUDY	PEMCH	F	0	0	3	100	0	0	CloMt
		DEEP	1		SE		3	105	3W	19-May-93	0815	CLEAR	PSSC	F	1	0	1	0	0	0	SlaMt
		DEEP	2		SE			105		19-May-93	0815	CLEAR	PSSC	F	1	0	0	0	0	0	SlaMt
		DEEP	3		SE		3	105	3W	19-May-93	0850	CLEAR	R3UBH	F	1	0	0	0	0	0	SlaMt
		DEEP	4			NE	3	10S	3W	19-May-93	0910	CLEAR	PSSC	F	1	0	0	0	0	0	SlaMt
	7	DEEP	5			SE		10S	3W	19-May-93	0915	CLEAR	PSSC	F	2	0	0	0	0	0	SlaMt
	á	DEEPSP	1			SW		105	3W	19-May-93			PSSC	R	0	0	0	0	0	0	SlaMt
		DEEP	6			SW		105		19-May-93	1015	CLEAR	PSSC	F	2	0	0	0	0	0	SlaMt
		DEEP	7			SW		105	3W	19-May-93	1023	CLEAR	PSSC	F	1	0	0	0	0	0	SlaMt
		DEEP	8	NE	SE	SW	3	105		19-May-93	1030	CLEAR	PSSC	F	1	0	0	0	0	0	SlaMt
		DEEP	9			SW		105		19-May-93			PSSC	F	10	0	0	0	0	0	SlaMt
		DEEP	10			SW		105		19-May-93			PSSC	F	1	0	0	0	0	0	SlaMt
		DEEP	11			SW		10S		19-May-93	1100	CLEAR	PSSC	F	1	0	0	0	0	0	SlaMt
		DEEP	12			SE		10S	3W	19-May-93		CLEAR	PSSC	R	0	0	0	0	0	0	SlaMt
		DEEP TRIB1	1			SE		105		19-May-93	1545	CLEAR	PSSC	F	1	0	0	0	0	0	SlaMt
	17	CONFPON	1			NE		105		20-May-93	0830	CLEAR	PSSA	F	8	0	0	1	0	0	SlaMt
		CURCK	1	SE	NE	SE	8	105	3W	20-May-93	1000	CLEAR	PSSA	R	0	0	0	0	0	0	SlaMt
		CURCK	2			SE		10S	3W	20-May-93	1035	CLEAR	PSSA	R	0	0	0	0	0	0	SlaMt
		CURCK	3			SE		10S	3W	20-May-93	1315	CLEAR	PSSA	R	0	0	0	0	0	0	SlaMt
		CURTRIB	1			SE		105		20-May-93	1435	CLEAR	PSSA	R	0	0	0	0	0	0	SlaMt
		CURTRIB2	1			SW		105	3W	20-May-93	1700	PCLOUD	PSSC	R	0	0	0	0	0	0	SlaMt
		MUDPON	1	NE		SW		95	2W	20-May-93	0800	CLEAR	PEMC	R	0	0	0	0	0	0	WaBxB
		POISNCR	1	NW		SW			1E	21-May-93	0923	CLEAR	PSSC	R	0	0	0	0	0	0	SnoCk
		POISNCR	2	NW	SW	SW	11	85	1E	21-May-93	0923	CLEAR	R4SBF	R	0	0	0	0	0	0	SnoCk
		POISNCR	3			NW			1E	21-May-93			R4SBF	R	0	0	0	0	0	0	SnoCk
		POISNCR	4	NW	NE	NW	11	85	1E	21-May-93	1050	PCLOUD	R4SBF	R	0	0	0	0	0	0	SnoCk
		POISNCR	5	SW	SE	SW	2	85	1E	21-May-93	1130	PCLOUD	R4SBF	R	0	0	0	0	0	0	RghMt
		POISNCR	6			SW		85	1E	21-May-93	1200	PCLOUD	R4SBF	R	0	0	0	0	0	0	RghMt
		LONEJUNCR	1	NW	NW	NE	10	8S	1E	21-May-93			R4SBF	R	0	0	0	0	0	0	SnoCk
	31		1	SW	NE	NE	10	85	IE	21-May-93	1050	MCLOUD	R4SBF	R	0	0	0	0	0	0	SnoCk
	32	LONEJUNCR	2	SW	NE	NW	11	8S	1E	21-May-93	1100	MCLOUD	R4SBF	R	0	0	0	0	0	0	SnoCk

														L	arva	e ai	nd Ad	ults		
trar	-												F.	Ob:	serve	ed a	at Tr.	anse	Ct	
sect			Loc	ati	on	by .	Sect	ion					or	Rp	Rp	Pr	Pr	Bw	Bw	
	Location Name and	#	1/4of	1/1of	1/10L	sec	TS	RA	Date	Time	WEATHER	NWI	R	ad	la	ad	lar	ad	la	Topo
			NW					2W	24-May-93	1430	CLEAR	PEMC	R	0	0	0	0	0	0	HUpCk
	ROCKCR N.F.	1	SW	NW	NE	14	85	2W	24-May-93	1500	CLEAR	R4SBC	F	0	0	0	2	0	0	HUpCk
	ROCKCR TRIB	1	SW	NW	SW	14	85	2W	24-May-93	1540	CLEAR	PSSC	R	0	0	0	0	0	0	HUpCk
	ROCKCR	1	SW	NW	SW	14	85	2W	24-May-93	1603	HAZY	R3UBH	R	0	0	0	0	0	0	HUpCk
	ROCKCR N.F.T					14		2W	24-May-93	1647	CLOUDY	PSSC	F	0	0	1	0	0	0	HUpCk
	STATION SPR.	1	SE	NW	NW	30	8S	2W	24-May-93	1847	CLOUD	R4SBC	F	0	0	0	30	0	0	HUpCk
	SF/NF ROCKCR	1	NE	NE	NE	14	85	2W	25-May-93	0935	CLEAR	R4SBA	R	0	0	0	0	0	0	HUpCk
	NFNFNF ROCKC	1	NW	NW	NE	14	85	2W	25-May-93	1000	CLEAR	R4SBA	R	0	0	0	0	0	0	HUpCk
41	POND L	1.	NE	SW	SE	11	85	2W	25-May-93	1035	CLEAR		F	0	0	1	20	0	0	HUpCk
42	EVANS LICKSP	1	NE	NE	NE	12	85	2W	25-May-93	1440	CLOUDY	R4SBA	F	0	0	1	20	0	0	HUpCk
43	EVANS LICK S	2	NE	NE	NE	12	85	2W	25-May-93	1450	CLOUDY	PUBFH		0	0	0	400	0	0	HUpCk
44	ROCKCR TRIB	2	SE	NE	NE	23	85	2W	25-May-93			R4SBA	R	0	0	0	0	0	0	HUpCk
45	ROCK CREEK	1	NW	NE	NE	35	85	2W	26-May-93			PSSC	R	0	0	0	0	0	0	HUpCk
46	ROCK CREEK	2	NE	SE	SE	26	8S	2W	26-May-93			PSSC	R	0	0	0	0	0	0	HUpCk
47	ROCK CREEK	3	NE	SE	SE	26	85	2W	26-May-93	1057	CLEAR	PSSC	F	1	0	0	0	0	0	HUpCk
48	ROCK CREEK	4	NE	NE	SE	26	8S	2W	26-May-93			PSSC	R	0	0	0	0	0	0	HUpCk
49	ROCK CREEK					26		2W	26-May-93			PSSC	R	0	0	0	0	0	0	HUpCk
50	ROCK CREEK	6	NE	NW	NE	26	8S	2W	26-May-93			PSSC	F	1	0	0	0	0	0	HUpCk
51	ROCK CREEK	7	NW	SW	SE	23	85	2W	26-May-93			PEMC	F	1	0	0	0	0	0	HUpCk
52	ROCK CREEK	8	NW	SW	SE	23	85	2W	26-May-93			PEMC	F	1	0	0	0	0	0	HUpCk
53	ROCK CREEK	9	NW	NW	SE	23	85	2W	26-May-93			PEMC	F	1	10	1	0	0	0	HUpCk
54	ROCK CREEK	10				23		2W	26-May-93			PEMC	F	0	20	0	30	0	0	HUpCk
55	ROCK CREEK	11				23		2W	26-May-93			PEMC	F	1	0	0	0	0	0	HUpCk
. 56	ROCK CREEK	12				23	85	2W	26-May-93			PSSC	R	0	0	0	0	0	0	HUpCk
	NFROCKTRIB3	1			SW		85	2W	27-May-93			PFOB	R	0	0	0	0	0	0	HUpCk
58	NFROCKTRIB3	2				24		2W	27-May-93			PFOB	R	0	0	0	0	0	0	HUpCk
59	ROCKCRTRIB3	3				23		2W	27-May-93			R4SBC		0	0	0	0	0	0	HUpCk
60	ROCKTRIB3	4				23		2W	27-May-93			PEMC	R	0	0	0	0	0	0	HUpCk
61		1				24		2W	27-May-93			PSSC	R	0	0	0	0	0	0	HUpCk
	NFSFROCKTR3	2				25		2W	27-May-93			PSSB	R	0	0	0	0	0	0	HUpCk
	NFSFROCKTR3	3				24		2W	27-May-93			PSSC	F	0	0	1	0	0	0	HUpCk
	NFSFROCKTR3	4				25		2W	27-May-93			PSSC	F	0	0	0	20	0	0	HUpCk
	NFSFROCKTR3	5				25		2W	27-May-93			PSSC	R	0	0	0	0	0	0	HUpCk
	PRIVATEPOND	1					10S	3W	02-Jun-93			PSSC	F		100	3	0	0	0	SlaMt
67	PRIVATECR	1	NE	NW	SE	03	105	03W	02-Jun-93	1431	CTOODA	R3UBH	Ŀ.	2	0	0	0	0	0	SlaMt

. .

1 . 1 . . .

.

.

													_				and A			
tran	-		-				~ .										at Tr			
sect							Sect		-					Rp	Rp		Pr		Bw	
	Location Name and						TS	RA	Date		WEATHER		R	ad	la		lar		la 0	Topo
	HURRYBACKCR	1	NW						02-Jun-93			PSSC	F	1	0	0	0	0		SlaMt SlaMt
69	STONEMANCR	1							02-Jun-93			PSSC	R	0	0	0	0	0	0	
	STONEMANCR	2	SW						02-Jun-93			PSSC	F	1	0	0	0	0	0	SlaMt
71	STONEMANCR	3							02-Jun-93			PSSC	F	3	0	0	0	0	0	SlaMt
72	STONEMANCR	4	NE				10S		03-Jun-93			PSSC	F	1	0	0	0	0	0	SlaMt
73	STONEMTRIB1	1							03-Jun-93			PEMA	R	0	0	0	0	0	0	SlaMt
	STONEMANCR	5							03-Jun-93			PSSC	F	1	0	0	10	0	0	SlaMt
75	STONEMANCR	5							02-Jun-93			PSSC	F	1	0	0	0	0	0	SlaMt
	STONEMANCR	6							04-Jun-93			PSSC	R	0	0	0	0	0	0	SlaMt
77	STONEMANCR	7							04-Jun-93			PSSC	F	1	0	0	0	0	0	SlaMt
	STONEMANCR	8	NW						04-Jun-93			PSSC	R	0	0	0	0	0	0	SlaMt
79	STONEMANCR	9							04-Jun-93			PSSC	R	0	0	0	0	0	0	SlaMt
80	WFDEEPCRTR1	1							06-Jun-93			PEMC	R	0	0	0	0	0	0	SlaMt
81	EFDEEPCRTR1	1							04-Jun-93			PEMC	R	0	0	0	0	0	0	SlaMt
82	EFDEEPCRTR1	2							04-Jun-93			PEMC	F	0	0	0	20	0	0	SlaMt
83	DEEPCREEKTR1	2							04-Jun-93			PEMC	F	0	0	0	30	0	0	SlaMt
84	DEEPCREEKTR1	3	SE	SW	SW	04	10S	03W	04-Jun-93	0955	RAINY	PEMC	R	0	0	0	0	0	0	SlaMt
85	DEEPCRTR1	4	NE						04-Jun-93			PEMC	F	0	0	0	20	0	0	SlaMt
86	DEEPCRTR1	3	SE	NE	NW				04-Jun-93			PEMC	R	0	0	0	0	0	0	SlaMt
87	DEEPCRTR1	4	SW	NW	NE	09	10S	03W	04-Jun-93	1121	RAIN	PSSC	F	0	0	1	0	0	0	SlaMt
88	WFDEEPCRTR1	1	NE	SE	SE	05	10S	3W	07-Jun-93	1727	CLOUDY	PEMC	F	0	0	0	30	0	0	SlaMt
89	WFDEEPCRTR1	2	NE	SE	SE	05	10S	3W	07-Jun-93	1747	CLOUDY	PEMC	R	0	0	0	0	0	0	SlaMt
90	WFWFDEEPCR	1	SE	SW	NE	5	10S	03W	07-Jun-93	1812	CLOUDY.	PEMA	R	0	0	0	0	0	0	SlaMt
91	WFWFDEEPCR	2	SW	SW	NE	5	10S	03W	08-Jun-93	0950	CLOUDY	PEMC	R	0	0	0	0	0	0	SlaMt
. 92	WFWFDEEPCR	3	NE	SE	NW	05	10S	03W	08-Jun-93	1007	CLOUDY	PEMC	F	0	0	0	30	0	0	SlaMt
93	EFWFDEEPCRTR	1	SE	SW	NE	5	10S	03W	08-Jun-93	1030	CLOUDY	PEMC	F	0	0	0	200	0	0	SlaMt
94	EFWFDEEPCRTR	2	NE	SW	NE	5	10S	03W	08-Jun-93	1110	CLOUDY	PEMC	R	0	0	0	0	0	0	SlaMt
95	WFEFWFDEEPCR	1	SE	SW	NE	5	10S	03W	08-Jun-93		CLOUDY	PEMA	R	0	0	0	0	0	0	SlaMt
96	WFEFWFDEEPCR	2	SW	NW	SE	5	10S	3W	08-Jun-93	1141	CLOUDY	PEMA	F	0	0	0	30	0	0	SlaMt
97	WFEFWFDEEPCR	3	NE	SW	SE	32	95	3W	08-Jun-93	1227	SUNNY	PEMA	R	0	0	0	0	0	0	SlaMt
98	EFEFWFDEEPCR	1	NE	SE	NE	5	105	3W	08-Jun-93	1453	CLOUDY	PEMC	F	0	0	0	100	0	0	SlaMt.
99	EFEFWFDEEPCR	2	NW	SE	NE	5	105	3W	08-Jun-93	1500	CLOUDY	PEMC	F	0	0	0	200	0	0	SlaMt
100		3	SE	SE	SE	32	95	3W	08-Jun-93	1547	CLOUDY	PEMA	R	Ō	Ō	0	0	Ő	õ	SlaMt
101	POLECREEK	1	SW	NE	SE	3	105	2W	09-Jun-93	0950	SUNNY	R3UBH	F	10	0	0	100	0	õ	WBxBa
102	POLE CREEK	2			SE	3	105		09-Jun-93			PSSC	F	2	Ő	ŏ	0	õ	õ	WBxBa

Larvae and Adults tran- F <u>Observed at Transect</u> or Rp Rp Pr Bw Bw													
tran-													
sect	Location by Section												
# Location Name and #	Hof Hof Kof sec TS RA Date Time WEATHE												
103 POLE CREEK 3	NW SE SW 9 10S 2W 09-Jun-93 1140 SUNNY	PSSC R 0 0 0 0 0 0 WBxBa											
104 POLE CREEK 4	SW NE SE 9 10S 2W 09-Jun-93 1341 CLOUDY	PSSC R 0 0 0 0 0 0 WBxBa											
105 POLE CREEK 5	SE SW NE 9 10S 2W 09-Jun-93 1440 SUNNY	PFOC R 0 0 0 0 0 0 WBxBa											
106 POLE CREEK 6	SW SW SE 9 10S 2W 09-Jun-93 1507 CLOUDY	PSSC F 0 0 0 100 0 0 WBxBa											
107 POLE CREEK 7	SW SE NE 9 10S 2W 09-Jun-93 1539 CLOUDY	PSSC R 0 0 0 0 0 0 WBxBa											
108 DEEPCREEK 1	SW NW SW 21 10S 3W 14-Jun-93 1505 SUNNY	PSSC R 0 0 0 0 0 0 SlaMt											
109 DEEP CREEK 2	NW NW SW 21 10S 3W 14-Jun-93 1540 SUNNY	R3USA F 0 0 0 200 0 0 SlaMt											
110 DEEP CREEK 3	NW SW NW 21 10S 3W 14-Jun-93 1613 SUNNY	PSSC F 0 0 0 0 1 0 SlaMt											
111 DEEP CREEK 3.	5 SW NE NW 21 10S 3W 14-Jun-93 1642 SUNNY	PSSC F 0 0 0 0 1 0 SlaMt											
112 DEEP CREEK 4	SW NE NW 21 10S 3W 14-Jun-93 1642 SUNNY	R3USA F 1 0 0 0 0 0 SlaMt											
113 DEEP CREEK 5	SE SW SW 16 10S 3W 14-Jun-93 1705 SUNNY	PSSC R 0 0 0 0 0 0 SlaMt											
114 DRY CREEK 1	NE SE SW 1 10S 1W 15-Jun-93 1101 CLOUDY	PEMC R 0 0 0 0 0 0 BSpRa											
115 DRY CREEK 2	NE NW SE 12 10S 1W 14-Jun-93 1132 SUNNY	PEMC F ?1? 0 0 0 0 0 BSpRa											
116 DRY CR POND 3	SW NW SE 12 10S 1W 15-Jun-93 1155 SUNNY	R3UBH F 0 0 0 1000 0 0 BSpRa											
117 DRY CREEK 4	NW NE SE 12 10S 1W 15-Jun-93 1245 SUNNY	PEMC R 0 0 0 0 0 0 BSpRa											
118 DRYCRTRIB1 1	NE NE SE 12 10S 1W 15-Jun-93 1336 CLOUDY	R 0 0 0 0 0 0 BSpRa											
119 DRY CREEK 5	NE SE SE 12 10S 1W 15-Jun-93 1416 CLOUDY	PEMC R 0 0 0 0 0 0 BSpRa											
120 DRY CREEK 6	NE NW NW 18 10S 1W 15-Jun-93 1525 CLOUDY	PEMC R 0 0 0 0 0 0 BSpRa											
121 DRY CR OXBOW 1	NW NW SW 20 10S 1E 15-Jun-93 1652 RAINY	PEMCH F 0 0 0 1000 0 0 CrbSp											
122 SF CASTLE CR 1	SW NE SE 08 08S 01W 16-Jun-93 0908 CLOUDY	PSSC R 0 0 0 0 0 0 CloMt											
123 SF CASTLE CR 2	NW NE SE 08 08S 01W 16-Jun-93 1001 RAIN	PSSC R 0 0 0 0 0 0 CloMt											
124 CAMAS CR 1	SW SE SE 07 10S 02W 21-Jun-93 0230 SUNNY	R3UBH R 0 0 0 0 0 0 BSpRa											
125 CAMAS CR 2	SW NE NE 18 10S 01W 21-Jun-93 1451 SUNNY	R3UBH R 0 0 0 0 0 0 BSpRa											
126 CAMAS CR 3	NE NW SW 18 105 01W 21-Jun-93 1512 CLOUDY												
127 CAMAS CR 4	NW NE NE 19 10S 01W 21-Jun-93 1612 CLOUDY												
128 CAMAS CR 5	SE NE SE 19 10S 01W 21-Jun-93 1649 CLOUDY												
129 CAMAS CR	SE SW SE 19 10S 01W 21-Jun-93 1715 RAINY	PSSC R 0 0 0 0 0 0 BSpRa											
130 NFCASTLECR 1	SE NW NW 15 07S 02W 22-Jun-93 1134 SUNNY	PSSC R 0 0 0 0 0 0 TriRe											
131 NFCASTLE CR 2	NW NE SW 15 7S 02W 22-Jun-93 1230 SUNNY	PSSA R 0 0 0 0 0 0 0 TriRe											
132 NFCASTLECR 3	SE NW SE 15 07S 02W 22-Jun-93 1358 SUNNY	PSSC R 0 0 0 0 0 0 TriRe											
133 NFCASTLECR 4	SW NE SE 15 07S 02W 22-Jun-93 1448 SUNNY	PSSC R 0 0 0 0 0 0 TriRe											
133 NFCASTLEOR 5	NW SW SW 14 07S 02W 22-Jun-93 1530 SUNNY	PSSC F 0 0 1 0 0 0 TriRe											
	SE NW SW 20 07S 02W 22-Jun-93 1812 SUNNY	PUBFH F 0 0 0 9000 0 0 TriRe											
	SE NE NE 24 08S 01E 23-Jun-93 1035 SUNNY	PSSC R 0 0 0 0 0 0 SnoCk											
	NW NW NW 19 08S 02E 23-Jun-93 1140 SUNNY	PSSC R 0 0 0 0 0 0 Shock											
137 EFSHOOFLYCR 2	14W 14W 14W 17 005 0215 25-0011-55 1140 50MM1												

2

.

																e ai	nd Ad	ults		
tran	Location by Section														erv	ed a	at Tra	anse	ct	
sect			Loc	ati	on	by	Sect	ion					or	Rp	Rp	Pr	Pr	Bw	Bw	
	Location Name and	d #	1/of	1/10E	1/10f	sec	TS	RA	Date	Time	WEATHER	NWI	. <u>R</u>	ad	la	ad	lar	ad	la	
	EFSHOOFLYCR	3						02E	22-Jun-93	1333	SUNNY	PSSC	R	0	0	0	0	0	0	SnoCk
	EFSHOOFLYDR	4	NE	SW	NE	18	075	02E	23-Jun-93	1444	SUNNY	PSSC	R	0	0	0	0	0	0	SnoCk
	EFSHOOFLYCR	5	NE	NE	NE	18	075	02E	23-Jun-93	1535	SUNNY	PSSC	R	0	0	0	0	0	0	SnoCk
	UNNAMED CREEK	ĩ	SE	SW	NE	27	095	02W	24-Jun-93	0840	SUNNY	PEMC	R	0	0	0	0	0	0	WBxBa
	UNNAMED CREEK	2	NW	SE	SE	27	095	02W	24-Jun-93	0921	DUNNY	PEMC	F	0	0	0	100	0	0	WBxBa
	UNNAMED CREEK	3	NE	NE	NE	34	095	02W	24-Jun-93	1000	SUNNY	PEMC	F	0	0	0	100	0	0	WBxBa
	UNNAMED CREEK	4	NW	SW	NW	35	095	02W	24-Jun-93	1027	SUNNY	PEMC	F	1	0	0	0	0	0	WBxBa
	UNNAMED CREEK	5	SW	SW	NW	35	095	02W	24-Jun-93	1047	SUNNY	PEMC	F	1	0	0	0	0	0	WBxBa
	UNNAMED CREEK	6	SW	SW	NW	35	095	02W	28-Jun-93	1325	CLOUDY	PEMC	F	0	0	0	100	0	0	WBxBa
	UNNAMED CREEK	7	SW	SW	NW	35	095	02W	28-Jun-93	1342	CLOUDY	PEMC	F	1	0	0	0	0	0	WBxBa
	UNNAMED CREEK	8	SW	SW	NW	35	095	02W	28-Jun-93	1424	CLOUDY	PEMC	F	0	0	0	8	0	0	WBxBa
149	SLACK CREEK	1	NW	NE	SE	25	10S	03W	29-Jun-93	1121	CLOUDY	R4SBC	R	0	0	0	0	0	0	SlaMt
150	SLACK DREEK	2	NE	NE	SW	25	10S	03W	29-Jun-93	1140	SUNNY	PSSC	F	0	0	0	100	0	0	SlaMt
	SLACK CREEK	3	SE	NE	SE	25	10S	03W	29-Jun-93	1204	SUNNY	PSSC	F	1	0	0	100	0	0	SlaMt
152	CAMEL CREEK	1	SW	NW	SW	30	10S	02W	29-Jun-93	1343	SUNNY	R3UBH	F	3	0	0	100	0	0	SlaMt
153	POLE CREEK	1					105		29-Jun-93			PSSC	R	0	0	0	0	0	0	SlaMt
154	POLE CREEK	2	NW	NW	NE	31	10S	02W	29-Jun-93	1527	SUNNY	R3UBH	R	0	0	0	0	0	0	WBxBa
155	POLE CREEK	3	NE	NW	NE	31	10S	02W	29-Jun-93	1541	SUNNY	R3UBH	F	1	0	0	0	0	0	WBxBa
156	POLECRTRIB	1							30-Jun-93			R4SSA	F	0	0	1	10	0	0	WBxBa
157	POLE CREEK	4							30-Jun-93			PSSC	R	0	0	0	0	0	0	WBxBa
158	CAMAS CREEK	7							30-Jun-93			PSSC	R	0	0	0	0	0	0	WBxBa
159	CAMASCREEK	8							30-Jun-91			PSSC	F	1	0	0	0	0	0	WBxBa
	CAMAS CREEK	9							30-Jun-93			PSSC	R	0	0	0	0	0	0	WBxBa
161	CAMAS CREEK	10							30-Jun-93			PSSC	F	0	0	0	20	0	0	WBxBa
.162	CCC SPRING	1							01-Jul-93				R	0	0	0	0	0	0	WBxBa
163	CCC SPRING	2							01-Jul-93				F	0	0	0	100	0	0	WBxBa
164	POISNCRTR1	1	NE						06-Jul-93			PSSC	R	0	0	0	0	0	0	SnoCk
165	POISNCRTR1	2	SE						06-Jul-93			PSSC	R	0	0	0	0	0	0	SnoCk
166	POISNCRTR2	1	NE						06-Jul-93			PSSC	R	0	0	0	0	0	0	SnoCk
167	POISNCRTR2	2	SW	SW	NW				06-Jul-93			PSSA	R	0	0	0	0	0	0	SnoCk
168	POISNCRTR2	3	SW	NE					06-Jul-93			PEMC	R	0	0	0	0	0	0	SnoCk
169	CAMAS CREEK	11	SE						07-Jul-93			R3UBH		0	0	0	0	0	0	WBxBa
170	CAMAS CREEK	12	NW						07-Jul-93			PSSC	F	0	0	0	20	0	0	WBxBa
	CAMAS CREEK	13		NW					07-Jul-93			PSSC	R	0	0	0	0	0	0	WBxBa
172	CAMAS CREEK	14	NW	SE	NW	25	105	02W	07-Jul-93	1320	SUNNY	R4SBF	F	0	0	0	100	0	0	WBxBa

tra	1-												-				nd Ad			
sect			LO	cat	ion	by	Sec	tion					F				t Tr			
#	Location Name and	#					c TS	RA	Date	mi	. LE MOUTE		or	Rp	Rp			Bw	Bw	
		15	NE				105		07-Jul-93	1240	WEATHER		<u> </u>	ad	la		lar		la	
		16					105		07-Jul-93	1410	SUNNY	PSSC	R	0	0	0	0	0	0	WBxBa
	BIRCH CREEK	1	NE		NE		065					PSSC	R	0	0	0	0	0	0	WBxBa
	BIRCH DREEK	2			SE		065		08-Jul-93 08-Jul-93	1158	SUNNY	R4SBF	R	0	0	0	0	0	0	RMtNe
	BIRCH DREEK	3							08-Jul-93	1258	SUNNY	PSSC	R	0	0	0	0	0	0	RMtNe
	BIRCH CREEK	Ă	SE	NIM	SF	16	065	010	08-Jul-93	1321	SUNNY	R4SBF	R	0	0	0	0	0	0	RMtNe
179		1			SE				12-Jul-93	1450	SUNNY	R4SBF	R	0	0	0	0	0	0	RMtNe
180	EFSHOOFLYCR	2	SE		NE		075	025	12-Jul-93	1124	SUNNY	PSSC	R	0	0	0	0	0	0	PerCa
	UNNAMED STREAM	ĩ	SW			23		025	12-Jul-93	1216	SUNNY	PSSC	R	0	0	0	0	0	0	PerCa
	UNNAMED	1	SE			23		026	12-Jul-93 12-Jul-93	1249	SUNNY		R	0	0	0	0	0	0	PerCa
	BIRCH CREEK	5	SW										R	0	0	0	0	0	0	PerCa
	BIRCH CREEK	6		SE			065	1E				R4SBA		0	0	0	0	0	0	RMtNE
	ERIC STREAM	1							12-Jul-93 12-Jul-93	1415	SUNNY	R4SBA		0	0	0	0	0	0	RMtNE
	ERICSTRTR1	ĩ	SE	SE	NTIAL	12	000	015	12-Jul-93	1415	SUNNY		R	0	0	0	0	0	0	RMtNE
187	UNNAMED CREEK	ĩ				13		010	12-Jul-93	1424	SUNNY	R4SBJ		0	0	0	0	0	0	RMtNE
	UNNAMED CREEK	1					003	01E	12-Jul-93	1436	SUNNY	R4SBA		0	0	0	0	0	0	RMtNE
	UNNAMED STREAM	1	NW	SW	ME	24	065	015	12-Jul-93	1444	SUNNY		R	0	0	0	0	0	0	RMtNE
	UNNAMED CREEK	1					065	015	12-Jul-93	1401		R4SBA		0	0	0	0	0	0	RMtNE
	UNNAMED CREEK	1	SW	MF	NITAT	31	005	015	12-Jul-93	1542		R4SBA		0	0	0	0	0	0	RghMt
	POISON CREEK	1	NW					026	12-Jul-93	1606		R4SBJ		0	0	0	0	0	0	RghMt
	HACKBERRYRES	1					073	026	13-Jul-93	1026	SUNNY	PSSA	R	0	0	0	0	0	0	PerCa
	HACKBERRYRES	2	SW	NW	NW	31	093	0.3M	13-Jul-93	1100			F	2	0	0	0	0	0	SlaMt
195	NIPAND TUCK	1	SE	SW	NW	27	090	0.314	13-Jul-93	1204		PUBHh		0	0	0	0	0	0	SlaMt
196	NIP AND TUCK	2	ME	SF	SF	21	095					R4SBF		0	0	0	0	0	0	SlaMt
	NIP AND TUCK TRIB	ĩ	SW				9S	3W	13-Jul-93 13-Jul-93			PSSC	R	0	0	0	0	0	0	SlaMt
	STONEMAN2ND	1									PCLOUD		R	0	0	0	0	0	0	SlaMt
								0.214	14-Jul-93 14-Jul-93	1104	SUNNY	PSSC	R	0	0	0	0	0	0	SlaMt
		3	ME	SE	NIL	07	100	0.214	14-Jul-93	1102		PSSFB	F	0	0	0	10	0	0	SlaMt
		4	NW	SM	NE	07	105	0.214	14-Jul-93	1215			F	0	0	0	0	0 3	100	SlaMt
			NE									PSSC	R	0	0	0	0	0	0	SlaMt
				SW					14-Jul-93	1443		PSSC	F	0	0	0	30	0	0	SlaMt
					SW	-			14-Jul-93	1546		PSSC	R	0	0	0	0	0	0	SlaMt
		5	1413	0.44	24	5	TOP	JW	14-Jul-93	1221	PCLOUD	PSSC	F	2	0	0	0	0	0	SlaMt

· ·

• •

Appendix II.Habitat parameters at transects. In order: transect # (see table 1); Conductivity; alkalinity; hardness; air temperature; water temperature; pH; depth in cm.; width in m; water flow class; grazing; substrate (0-100): mud, sand, gravel, rock; streamside vegetation (0-3): sage, grass, forbs, reeds, bare, willow, cottonwood; aquatic vegetation (0-3): emergent, submerged, algae; hiding place present, hiding place type.

P=	P		,			P				gra		Subst				Str	eams	ide y	req.			Agu	atic	vea	<u>Hideaway</u>
£	cond	hard	alka	_T.	<u> </u>		dep.		body	zing	mud		grav									emer	subm 3	alga 0	Y or N type
1									POND		100	0	0	0	1	2	0	0	2	0	0	0.5	-	0	
2									POND		100	0	0	0	1	1	1	1	3	1		0.5		0	
3	93	20	40				10		POOL	0	0	100	0				0 0	2.0							
4	93	20	40				7		OXBO		0	100	0					0.5							
5	93	40	60				7		OXBON		0	100	0					0.5							
6	93	40	60				9		OXBO		0	100	100					0.0							
7	93	40	60				22 3		OXBON POOL		0	0	50					1.0							
8	0.2	40	60				27		OXBO		0	100	0					0.0							
9	93	40 40	60				8		OXBO		0	100	0					1.5							
10	93	40	60 60				37		OXBO		0	100	0					0.0							
11 12	93 93	40	60				24		OXBO		50	50	0					0.0							
13	93	40	60				12		OXBO		0	100	Ő					0.0							
14	22	40	60				9		OXBO		ő	100	ő					1.0							
15	93	40	60				25		OXBO		ő	25	25					0.0							
16	25	20	40				24		POOL		ŏ	25	25					1.0							
	340	20	40				32		POOL	2	ő	0	0					2.5							
	420				12.	8	13		OXBO		ő	10	90					1.0							
	420	20	40		12.	U I	19		OXBO		ő		100					0.5							
	420	20	40				7		RUN	0	0	0	100					1.5							
	420	20	40				1		POOL	Ő	0	0	50	50	1.5	1.0	2.0	1.5	0.5	0.0	0.0	0.5	1.5	1.0	
22	100	40	60						RIFF		0	0	0					2.5							
23					12.	5	42	13.0	POOL	2	90	0	10	0	2.5	1.0	0.5	1.5	0.5	0.0	0.0	2.0	2.5	2.0	
	250	120	140		9.		13		RIFF		10	90	0	0	2.0	2.5	1.0	0.5	0.0	0.0	0.0	0.5	0.0	0.5	
	250				9.		20	1.0	RIFF	L 2	50	0	0	50	2.0	1.0	1.0	0.5	1.0	1.0	0.0	0.5	0.5	0.0	
	250						12	1.0	RIFF	L 1	50	0	50	0	2.0	0.5	1.0	0.0	1.0	1.0	0.0	0.5	0.0	0.0	
27	250	120	140		9.	5	17	1.0	RIFFI	L 2	0	0	50	50	2.0	1.5	1.0	0.0	2.0	2.0	0.0	0.5	0.5	0.0	
28	250	120	140				19	1.0	RIFF	L 2	0	0	50	50	0.5	0.5	1.0	0.0	1.0	0.5	0.0	0.0	0.0	0.0	
29	250	120	140				17	1.0	RIFF	ե 2	0	0	50	50	3.0	0.0	1.0	0.0	2.0	1.0	0.0	0.5	0.0	0.0	
30							15	0.5	RIFF	ь 2	10	90	0	0	2.0	2.0	2.0	0.0	0.5	0.5	0.0	0.0	0.0	0.0	
31		40	60				7	0.2	RIFF	L 1	0	70	20					0.0							
32							15	1.0	RIFF	ե 1	10	30	10	10	3.0	0.5	1.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	

									g	ra-	Sub	strat	e		St	ream	side	vea			A	ruati	c vea	E	ideaway
#	cond	hard	alka	_T.	T.	dep	wid.	body	zing	mud	sand	grav													N LYDE
33		40	60		21.0	2	0.5	RUN	1	0	10	80					1.0								VEG
34		20	60		22.0	4	2.0	POOL	2	100	0	0					2.0								VE.
35		40	60		23.0	2	1.0	RUN	2	10	0	80					0.0								VEG
36		40	60		18.0	10	1.5	RUN	2	0	0	80					1.0							_	ALGAE
37		40	60		19.0	5		RUN	1		0	85					2.0								ALGAE
38		40	60		18.0			POOL		100	0	0					0.5								VEG
	102	40	60		10.0			RUN	1	0	0	50					1.0								VEG
40	98	40	60		10.0			RUN	1	0	0	100					1.5								VEG
	105	40	40		17.0			PONE		90	0	0					2.0								VEG
42	77	40	40		14.0			PONE		70	0	30					0.5								ALGAE
43	100	40	60		26.0	. 2	17.0		2	100	0	0					2.5							_	VEG
44	109	40	60		12.5			RUN	1	0	0	40					0.5							-	VEG
45	80	40	60		10.0			RUN	1	5	90	5					1.0							N	
46	0	40	60		10.0			RUN	0	0	10	90					0.0							N	
47	97	40	60		12.0			OXBC			0	0					1.5								STICKS
48	97	40	60		11.0			RUN	1	5	0	80					2.0								VEG
49	97	40	60		14.0			RUN	1	0	10	65					1.0								VEG
50	97	40	60		16.0			RUN	1	0	50	50					2.5								VEG
51	97	40			15.0			POOL			0	75					1.5								VEG
52	97	40			18.0			POOL		100	0	0					1.0								VEG
53	97	40			32.0			POOL		100	0	0					0.5							-	VEG
54	97	40			28.0			OXBC			0	0					1.0							-	VEG
55	97	40			17.0			POOL		50	50	0					1.0								VEG
56	97	40			18.0			RIFF		10	0	45					0.5								VEG
57	69	20			10.0			RIFF		0	0	25					2.0							N	
, 58	69	20			10.0			RIFF		0	0	50					0.5							N	
59	69	20			12.0			RIFF		0	0	50					0.5								NO
60		20	60		11.0			RIFF		0	0	100					0.0							_	VEG
61	73				12.0			RIFF		0	0	50					0.5							_	ALGAE
62					15.5			RUN	1	0	0	50					3.0							-	VEG
63		20			21.0			RUN	1	0	0	70					1.5								ALGAE
64		20			22.0			RUN		100	0	0					2.5								VEG
65		20			20.0			RUN		100	0	0					2.5								VEG
66	95	40			12.0			PONE		100	0	0					2.0							_	VEG
67		40	60	26.1	22.0	30	2.5	OXBC	W 1	5	0	95	0	0.0	2.0	0.5	1.0	1.5	1.0	0.0	2.0	0.5	0.5	Y	VEG

.

. .

									g:	ra		strat					side						c vec		ideaway
		hard						body .			sand														N Lype
68	58	40	60	25.0	16.0	25	3.0	RUN	2	0	20	80					0.5							Y	VEG
69	72	40	60	12.0	10.0	4	2.0	RIFFI	. 1	0	0	30					2.5							Y	VEG
70	72	40	60	10.0	10.0	15	1.3	RIFFI	1	0	0	10					2.0								VEG
71	72	40	60	11.0	10.0	24	2.0	OXBOW	1	98	0	0					2.5							Y	VEG
72	72	40	60	11.0	10.0	9	1.0	OXBO	1 1	100	0	0					2.0							Y	VEG
73	72	40	60	11.0	11.0	10	1.0	RIFFI	1	0	0	10					2.5							Y	VEG
74	72	40	60	11.0	11.0	35	7.5	OXBOW	12	98	0	0					2.0							Y	VEG
75	72	40	60	11.0	11.0	4	0.8	OXBOW	13	100	0	0					2.5							Y	VEG
76	72	40	60	9.0	9.0	31	2.0	RUN	1	0	20	80	0	1.0	0.5	1.0	3.0	0.5	2.5	0.0	1.5	0.5	2.0	Y	VEG
77	72	40	60	14.0	12.0	20	1.5	OXBOW	11	50	0	0	50	0.0	0.5	1.0	2.5	0.0	2.5	0.0	2.0	0.0	0.0	Y	VEG
78	72	40	60	15.0	10.0	24	3.0	RUN	1	0	20	80					1.0							N	
79	72	40	60	15.0	10.0	35	3.0	RUN	2	10	70	20	0	0.0	0.5	1.0	2.0	2.0	1.0	0.0	1.0	1.0	2.0	Y	VEG
80	71	20	40	15.0	12.0	37	3.5	RUN	1	100	0	0	0	0.5	2.0	2.0	3.0	0.5	0.0	0.0	2.0	0.5	2.0	Y	VEG
81	53	40	60	14.0	16.0	28	2.0	POOL	2	50	0	40	5	1.0	1.0	1.5	8.2	0.0	0.0	0.0	1.0	0.5	3.0	Y	ALGAE
82	53	40	60	14.0	18.0	20	1.0	POOL	2	0	50	0	50	0.5	2.0	2.0	2.0	0.0	0.0	0.0	1.0	0.5	0.5	Y	BANK
83		40	60	14.0	18.0	20	1.0	POOL	2	0	50	0					2.0							Y	BANK
84	74	40	60	12.0	12.0	3	3.0		2	0	0	50					2.5							Y	VEG
85	74	40		11.5		6	0.5	RUN	2	70	0	0					2.0							N	
86	74	40	60	13.0	12.0	24		RUN	1	0	10	70					2.0								VEG
87	74	40	60	13.0	12.0	30	2.0	RUN	1	50	20	20	0	0.0	1.0	1.0	3.0	0.0	1.0	0.0	1.5	1.0	2.0	Y	VEG
88	0	40	60	13.0	15.0	11	2.0	RUN	1	100	0	0	0	0.5	1.0	2.0	3.0	0.0	0.0	0.0	3.0	2.0	3.0	Y	ALGAE
89	0	40	60	13.0	11.0	17	0.8	RUN	1	10	10	75	5	1.0	1.0	2.5	2.0	1.0	0.5	0.0	2.0	1.0	2.0	Y	ALGAE
90	118	40	80	12.0	14.0	15	1.5	POOL	2	20	80	0					2.0							Y	ALGAE
91	118	40	80	10.0	7.0	11	1.0	RUN	2	100	0	0	0	0.0	1.0	2.0	2.5	0.5	0.0	0.0	1.0	5.0	0.0	N	
92	118	40	80	14.0	8.0	7	3.0	POND	1	100	0	0	0	0.0	2.5	5.0	5.0	0.0	0.0	0.0	5.0	1.0	0.5	Y	VEG
93	64	40	60	11.0	8.0	4	3.0	RUN	1	80	20	0	0	0.5	1.0	1.0	2.5	1.0	0.0	0.0	1.0	0.5	2.0	Y	REEDS
94	64	40	60	15.5	8.0	6	0.5	RUN	1	20	0	80	0	0.0	0.5	1.0	3.0	0.0	0.0	0.0	3.0	1.0	2.0	Y	VEG
95	56	20	40	24.0	15.0		1.0	RUN	1	0	0	100	5	1.0	1.0	2.0	0.0	0.0	0.0	0.0	1.0	1.0	0.5	N	
96	56	20	40	20.5	11.0	5	2.0	POOL	1	0	0	100	0	0.5	2.0	2.0	3.0	0.0	0.0	0.0	2.0	1.0	3.0	Y	ALGAE
97	56	20	40	24.0	16.0	14	0.5	POOL	2	0	0	100	0	1.0	2.0	2.0	2.0	0.5	0.0	0.0	0.0	0.0	2.0	N	
98	51	20	40	26.0	20.0	50	1.5	POOL	1	0	100	0	0	1.0	2.0	2.0	2.0	0.5	0.0	0.0	1.0	0.0	2.0	Y	ALGAE
99	51	20	40	26.0	20.0	18	1.0	POOL	2	0	0	100	0	0.5	2.0	1.0	2.0	1.0	0.0	0.0	2.0	1.0	3.0	Y	ALGAE
100	51	20	40	25.0	18.0	15	1.5	RUN	2	5	5	90	0	0.0	1.0	3.0	2.0	0.0	0.0	0.0	1.0	0.5	2.5	Y	ALGAE
101	90	60	60	21.0	12.0	25		OXBOV	1	80	10	20	0	0.5	1.0	1.0	2.0	2.0	1.0	0.0	2.0	1.0	2.0	Y	VEG
102	72	60	60	17.0	13.0	22	3.0	RUN	1	0	0	90	10	0.5	1.0	2.0	2.0	1.0	2.0	0.0	1.0	2.0	0.0	Y	VEG

.

										gra		Subst					eams						atic			leaway
	cond	hard	alka .	Т.	_T,	_	dep.	wid.	body	zina		sand														N type
103	72	60	60 21	.0	14.0		24	2.0	RUN	0	0	0	80									2.0			N	
104	72	60	60 32	.0	17.0		13	2.0	RUN	2	0	0										0.0			N	
105	72	60	60 27	.0	16.0		45	3.0	RUN	1	0	50	50									1.0			N	
106	96	60	60 26	.0	23.0		40	2.0	OXBC	W 0	0	0										1.0				ALGAE
107	96	60	60 26	.0	19.0		24		RIFF	ъ 0	0	0	10									0.5			-	ROCK
108		40	40 28	.0	22.0		4	4.0	RUN	2	50	0	50									0.0			N	
109		40	40 34				1		OXBC		90	0	10									0.0			N	
110		40	40 35				24		RUN	0	0	20	80									0.0			N	
111		40	40 17				25	6.0		0	0	10	90									0.0			N	
112		40	40 17				54		OXBC		0	100	0									0.0			-	VEG
113		40	40 29	.0	24.0		33		RIFF	ъ 0	0	10	90									1.0			N	
114		40	40 26	.0	15.0		25		RUN	1	90	0	10									1.0			N	
115		40	40 22				31		RUN	1	80	0	10									1.0			-	VEG
116		40	40 12				24	20.0) 1	100	0	0									1.5			N	
117		40	40 12				10	1.0		1	0	10	90									1.5			N	
118		40	40 24				12	0.5			100	0	0									2.5			_	VEG
119		40	40 24				10		RIFF		5	5	10									1.0			N	
120		40	40 17				12	1.5		2	50	50	0									1.0			N	
121		40	40 13						OXBO			0	0									0.0			N	
122					8.0		16		RIFF		0	10	20									1.0			N	
123					8.5		10		RUN	1	0	20	80									2.0			N	
124	69	40	60 20				44		RUN	2	30	0	70									1.0			N	
125	69	40	60 24				37		RUN	1	60	0	40									1.0				BANK
126	69	40	60 24				11		RIFE		0	0	80									1.0				ALGAE
127	69	40	60 20				22		RUN	1	0	0										2.0				BANK
. 128	69	40	60 18				36		OXBO		100	0	0									1.0				ALGAE
129	69	40	60 15				31		POOL		80	0	0									2.5				VEG
130		60	80 16				28		RUN	1	0	50	10									1.0				VEG
131		60	80 20				23		RUN	1	30	60	10									1.0				VEG
132		60	80 24				38		RUN	1	40	60	0									0.0			Y	VEG
133		60	80 21				39		RUN	1	25	20	30									0.0			N	
134		60	80 21				24		RUN	1	10	0	70									1.5			N	
135		40	80 19					50.0			100	0	0									2.5			N	
136	74	40	40 19		8.0		13		RIFE		. 0	0	90									1.0			N	
137	74	40	40 18	.5	9.0		18	1.0	RIFF	њ 1	0	0	35	65	0.0	1.0	2.5	0.0	0.5	1.5	0.0	0.5	0.0	0.5	Ŷ	VEG

.

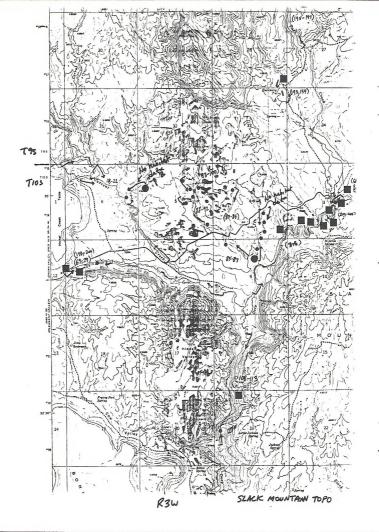
									ara	-	Subst	rate			Str	eams	ide 1	zea.		Aquatic yeq				Hideaway		
	cond	hard	alka	_T.	т	dep.	wid.	body z	ina	mud	sand	grav	rock	sabr	aras	forb	reed	bare	will	cott	emer	subm	alga	X O	r N Lype	
138	74	40		20.0		 12		RIFFL		0	0	80	20	1.0	0.5	2.5	0.0	2.0	2.0	0.0	1.0	0.0	0.0	Y	VEG	
139	74	40	40	19.5	13.0	8	2.5	RIFFL	3	0	0	20	80	1.5	0.0	2.0	0.0	2.5	2.5	0.0	2.0	0.5	0.0		VEG	
140	74	40	40	23.5	13.0	6	2.0	RUN	3	50	50	0			0.0										VEG	
141	0	40	40	14.5	8.0	24	1.0	RUN	1	100	0	0			1.0										ALGAE	
142		40	40	18.0	13.0	60	13.0	POOL	1	20	50	30			1.0										ALGAE	
143		40	40	18.0	12.0	30	2.0	POOL	1	10	80	10			1.5										ALGAE	
144		40	40	18.0	11.0	25	3.0	POOL	1	100	0	0			0.5										BRANCH	
145		40	40	21.0	16.0	15	3.0	POOL	1	100	0	0			0.0									_	ALGAE	
146		40	40	20.0	20.0	32	5.0	RUN	1	100	0	0			0.5										ALGAE	
147		40	40	20.0	19.5	12		POOL	1	0	0	50			1.0									N		
148		40	40	21.0	17.0	4		RUN	1	0	5	5			2.0										ALGAE	
149	57	40	40	19.0	11.5	15		RUN	2	0	50	50			0.0										ALGAE	
150	57	40	40	26.0	11.0	15		OXBOW		40	60	0			0.5									N		
151	57	40			14.0	34		OXBOW		0	10	70			0.0										VEG	
152	61	80			23.0	15		POOL	1	0	50	50			0.0										VEG	
153	90	60			21.0			POOL	2	0	0	95			0.0									N		
154	90	60			23.0	25		RUN	1	0	0	30			1.0										ALGAE	
155	90	60			24.0	12		POOL	1	0	50	50			0.0									N		
156	77	60			16.0	6		POOL	2	0	0	60			2.5									N		
157		60			13.0		6.0		1	0	80	0			0.5										ALGAE	
158		60			14.0	5		RIFFL		0	0	0			0.0										ALGAE	
	106	60			17.0	15		RUN	1	0	0	30			0.5									N	ALGAE	
160		60			17.5	52		RUN	1	0	0	60			1.0										ROCK	
161		60			24.0	15		OXBOW		0	0				0.0									-	ALGAE	
	104	80			16.0	20		RUN	1	0	0	0			2.0									-	VEG	
.163	79	60	80		14.5			POND		100	0	-			1.0									N	VEG	
164	35			28.0	26.0	5		RIFFL		0	90 90	10 10			0.5									N		
165					22.0	5		RIFFL		0	90	30			0.0									N		
166					13.0	5		RUN	3	-	80	20			1.0									N		
167	33				13.0	2		RUN	3	0	90	10			0.5									N		
168	33	~ ~			15.0	5		RUN	3	0	30	70			0.5									N		
169	65	60			16.0	24		OXBOW			30	0			0.5										VEG	
170	65	60			13.0	15		RUN	1	100	10	10			2.0									-	ALGAE	
171	65	60			15.0	16		OXBOW		40	20	20											1.5			
172	65	60	60	21.0	20.0		8.0	OVROW	2	40	20	20	∠0	0.5	2.0	1.0	1.5	0.5	0.5	0.0	1.5	2.0	1.0	1	v 20	

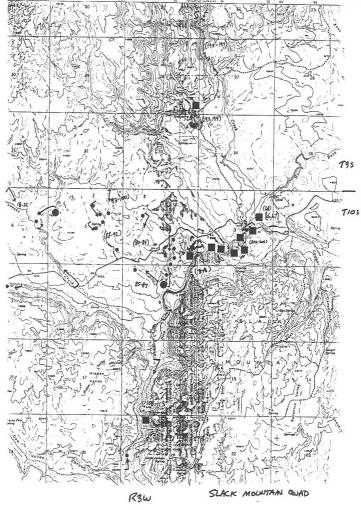
.

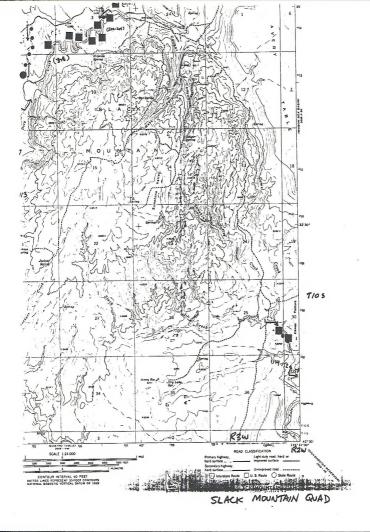
									gra-		Subst	trate		_	Streamside veg.						Aquatic yeq				deaway
ŧ	cond	hard	alka	T.	Т.	 dep.	wid.	body	zing	mud	gand	grav	rock	sabr	gras	forb	reed	bare	will	cott	emer	subm	alga	Y OF	N type
173	65	60		23.0		 30	4.0	RUN	1	0	10	70	20	0.0	2.0	0.5	1.5	0.5	2.5	0.0	2.5	0.5	0.5	N	
174	65	60	60	26.0	20.0	35	2.0	RIFF	L 1	0	0	30	70	0.5	1.0	1.0	1.0	2.0	1.0	0.0	0.5	0.0	1.0	Y	ROCK
175	315	60	80	26.5	14.0	12	1.5	RUN	2	0	0	80	20	0.5	0.0	0.5	0.0	2.5	2.0	0.0	0.0	0.0	2.0	N	
176	315	60	80	30.0	15.0	14	1.5	RUN	2	0	20	50	30	2.0	0.0	2.0	0.0	2.0	2.0	0.0	2.5	0.5	1.0	Y	VEG
177	315	60	80	30.0	17.5	15	0.5	RIFF	ь 2	0	10	20	70	1.5	0.5	1.5	0.0	2.5	2.0	0.0	0.5	0.0	0.0	N	
178	315	60	80	29.0	17.5	20	1.0	RIFF	ь 2	0	50	50	0	0.0	0.0	1.0	0.0	3.0	2.0	0.0	0.5	0.5	0.0	N	
179	129	60	80	19.0	12.0	16	1.0	RUN	1	50	50	0	0	0.5	2.5	2.5	0.0	1.0	2.5	0.0	0.5	0.0	2.0	Y	ALGAE
180	129	60	80	24.5	14.0	10	2.5	RIFF	ь 1	10	30	20	40	2.5	2.0	2.0	1.0	2.0	0.0	0.0	1.5	0.5	2.5	N	
181				23.0		0	1.5	DRY	1	0	0	70	20	1.0	2.0	0.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	N	
182				23.0		0	3.0	DRY	0	0	80	20	0	2.5	0.0	0.5	0.0	2.5	0.0	0.0	0.0	0.0	0.0		
183				23.0		0	16.0	DRY	1	0	70	20	10	2.5	0.0	0.5	0.0	3.0	0.0	0.0	0.0	0.0	0.0		
184				26.5		0	12.0	DRY	1	0	70	20	10	3.0	0.5	0.5	0.0	2.5	0.0	0.0	0.0	0.0	0.0	Ν	
185				25.0		0	2.0	DRY	1	0	70	30	0	3.0	1.0	0.5	0.5	0.0	2.5	0.0	0.0	0.0	0.0	N	
186				26.5		0	3.0	DRY	1	0	80	20	0	3.0	1.0	1.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	N	
187				26.5		0	3.0	DRY	1	0	90	10								0.0				N	
188				26.0		0	1.0		0	0	80	20								0.0				N	
189				26.0		0	2.0		0	0	80	20								0.0				N	
190				26.0		0	3.0		1	0	50	50								0.0				N	
191						0	1.0		0	0	60	30								0.0				N	
192					29.0	16	1.0		1	0	30	30								0.0				N	
193	44	40		20.0			30.0			70	30	0								0.0				-	VEG
194	44	40		23.0		60		POND		0	100	0								0.0					VEG
195	37	40		30.0		20	2.5		2	0	0	60								0.0				N	
196	37	40	40	29.0	16.0	7	2.0		1	0	0	80								0.0					BANK
197						0	1.0		1	0	0	10								0.0				N	
198	80	80		20.0		41		RIFF		0	0	50								0.0				-	BANK
199	80	80		23.0		15		OXBO			0	0								0.0				-	ALGAE
200	80	80		23.0		15		POND		100	0	0								0.0				-	ALGAE
201	80	80	40	27.0		45	2.0		1	20	50	30	-							0.0				N	
202					24	24		OXBO		0	100	0	0	0	2		2.5		1.5		1.5			N	
203				29	23	20	1.5		1	0	70	30	0		1.5	2	0		2	0	0	0	0		BRANCH
204				29	22	35	3	OXBO	W 1	10	20	70	0	0	1.5	0.5	1.5	2.5	2	0	1	0	0.5	Y	BANK

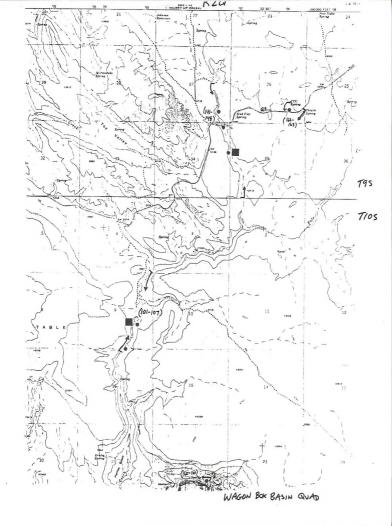
QUAD MAPS:

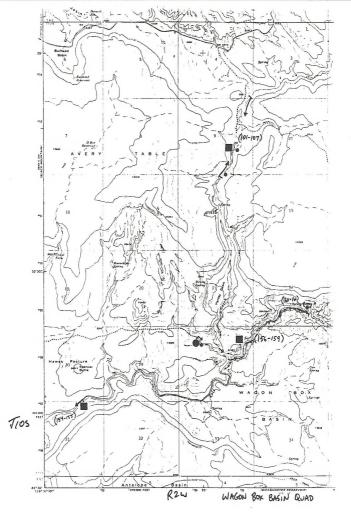
These maps are copies of areas of quadrangle maps that were surveyed by us. They are ordered from the SW portion of our site to the SE portion of our site, then from NW to NE.

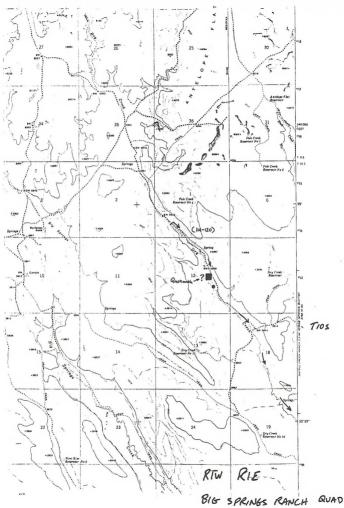

--- Numbers in parentheses refer to site numbers (see Appendixes I and II).

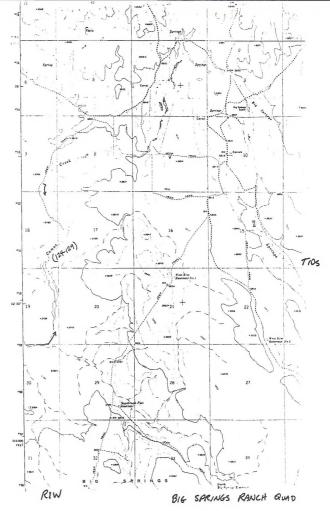

--- Large squares: Spotted frog adult (s)

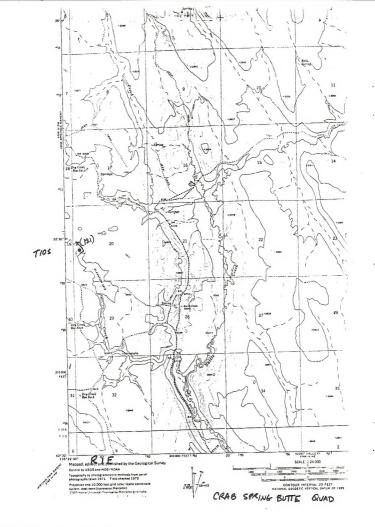

--- Small squares: Spotted frog larva(e)

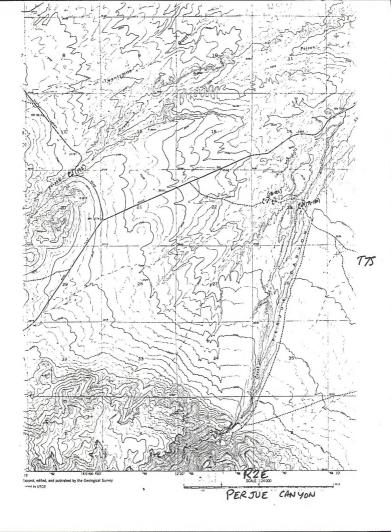

--- Large circles: Treefrog adult(s)

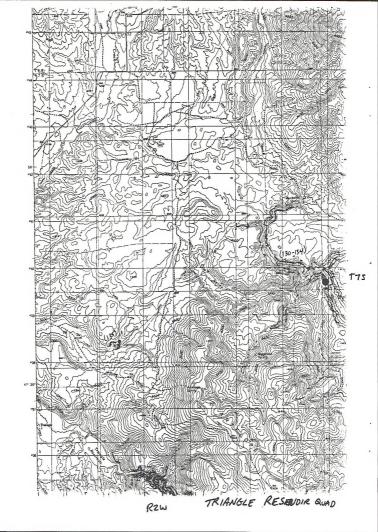

--- Small circles: Treefrog larva(e)

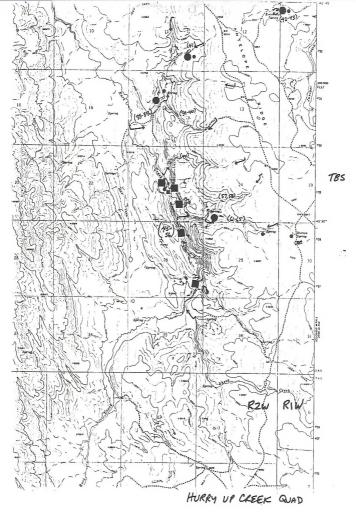


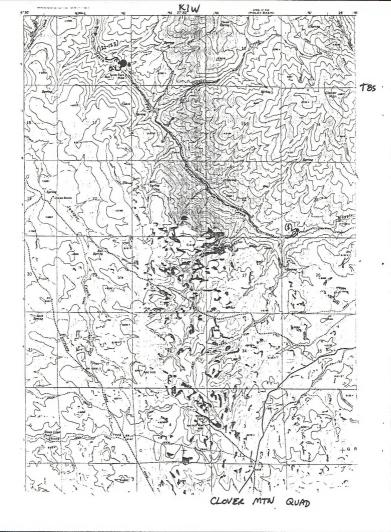


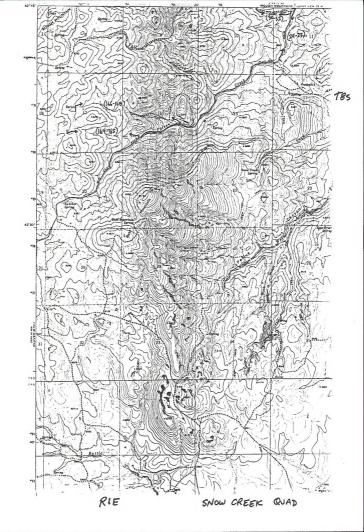


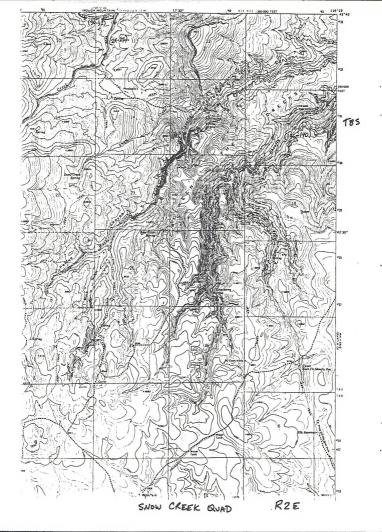


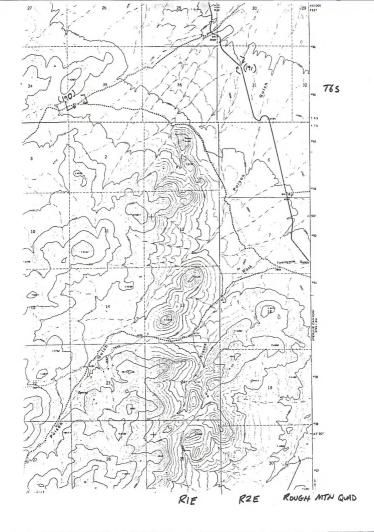


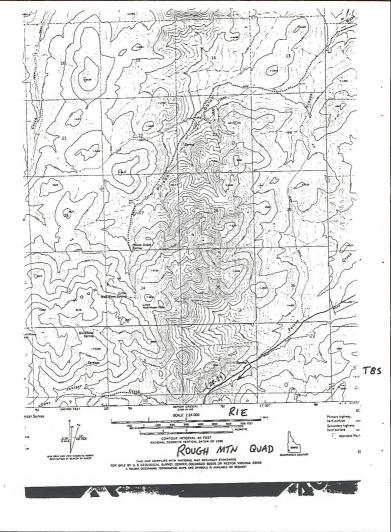


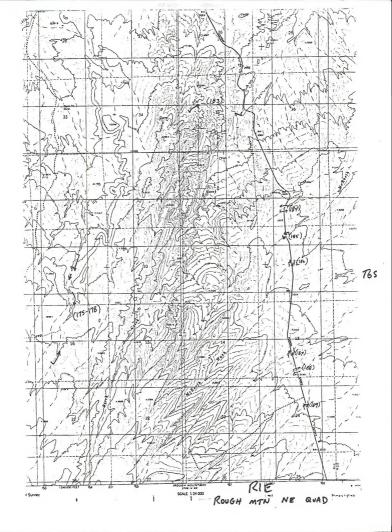












LOCATION NOTES

These are notes informally taken at most watercourses surveyed.

Magpon-5/18/93 Site 1

Part of an old water course that has been redirected (oxbow). Rolling hills were covered with sagebrush. There were many bare spots caused by cattle. There was vegetation all along the bottom, primarily reeds. Treefrog larvae tended to remain deeper in the mud and vegetation. There were many aquatic insects.

N. Castle Mine Pond-5\19\93 Site 2

This was a stagnant pond by rolling hills created by man as a holding pond for mines. Sagebrush covered one side of the pond, while sedge and reeds surrounded the other side. There were many bare areas due to cattle. Treefrog larvae were found throughout. However, many larvae were found mainly in dense vegetation, lying on muddy bottom. Many adult Pacific Treefrog adults were found in the pond along the waters' edge and up to 35 yards away from the pond's edde.

S. Castle Mine Pond-5/19/93

Stagnant pond next to n. Castle Mine Pond, separated by a dam. Diameter was 160 X 60 meters. Fresh water flowed into pond off hillside. The hillside was covered with sagebrush with bare areas due to cattle grazing. Many adult Pacific Treefrogs were found along the waters' edge. The water was very murky; a lot of algae and plant material found throughout.

Deep Creek #1. 5/19/93 Sites 3-16

The area surveyed was between Mud Flat Rd. and diversion dam which is at the border of private land. Deep Creek flowed through a canyon, however the first half mile was open. On this first survey, none of the adult spotted frogs were found in the stream, but rather on banks or in oxbows, which were numerous along Deep Creek. Treefrog adults were also found, but there weren't as many as Spotted frogs. There was evidence of grazing. Some areas had dense vegetation along the stream.

Noname A. 5\19\93

Runoff heading toward stream forming pools contained young Treefrog larvae. No adult of either species (Spotted/ Pacific Treefrog), were sighted. Location was located 50 meters down hill from mud flat road. The flow was very low, there was heavy algae and several pools approximately 1 X 1 meter in diameter and 3-5 centimeters deep. Noname eventually emptied into Deep Creek. Only the 100 meter section beginning 50 meters downstream had treefrog larvae.

Current creek. 5/20/93 Sites I8-22

Surveyed area from Mud Flat Road upstream to tributary that takes off to the West. The current winded through a rocky canyon. There were substandard patches of willows found along the stream. Relatively few oxbows. Only/one held Treefrog Larvae. No Spotted Frogs were sighted. Treefrog larvae were found in a very deep oxbow with few fish. Three-quarters of the way up, in section 6, it became extremely heavy with willow trees. Steep canyon walls prevented passage. Several tributaries were septored, One adult treefrog was sighted. A couple garter snakes were seen.

Mud Flat Pond (MudPon). 5\21\93 Site 23

Pond located 3 meters from Mud Flat Road. There were no adults or larvae found. The pond's diameter was 13 X 20 meters. The topography was half rolling hills and half flat. There was lots of sagebrush and sedge; also a lot of emergent vegetation and almost 100% algae on the bottom. 100+ meters west of cattlequard-near BLM camp.

Poison Creek. 5\21/93 Sites 24-29

Poison Creek was a fairly narrow stream, approximately 1 meter across. Mostly riffles, some runs and rarely pools and oxbows. Steep incline. The vegetation primarily consisted of sagebrush and some willow. No larvae or adult frogs were found. The water was very muddy and full of silt. There was evidence of heavy grazing. Poison Creek was approximately 1 to 6 meters from Mud Flat Road.

Lone Juniper Creek, 5/21/93 Sites 30-32

Lone Juniper Creek drains into Poison Creek. Narrow stream, approximately 1 meter wide. Fast moving runs and riffles, no pools. Sand and gravel bottom with large rocks. Silt along edge, making it murky. No vegetation in stream. In some spots there were willows and birch trees, the rest was covered in sage. Mud Flat Road crossed the stream three times. The bottom of the stream was gravel. Lone Juniper Creek had a sand bag dam with water flowing over. Evidence of heavy grazino.

Rock Creek Trib. #1, S.F., 5/24/93 33+

A small amount of water was moving through, dry for approximately IOO meters (intermittent). Lots of Juniper bushes. No adult or larvae was found.

Rock Creek Trib. #1 (SPring). 5\24\93

A spring was found in wide open flat area approximately 5 X 2 meters in diameter. Some algae and sedge was growing in the spring. Two adult treefrogs were found along with several treefrog larvae. Murky stagnant water.

Rock Creek #A, 5\24\93

High embankment on either side of Creek. No species of frog were found. There was an equal amount of sedge, forbs and willow.

Rock Creek Trib. #1. N.F., 5/24/93

Same as Rock Creek Trib. #I South Fork.

Station Spring 5/24\93 Site 38

This spring was found in an open meadow covered with grasses and some sagebrush, 1.5 X 5 meters. 100% mud substrate. Lots of algae. Treefrog larvae found throughout.

Private Pond. 6/2/93 Sites 66-67

Private Pond- diameter was 30 X 6 meters. It was directly across from where bottom of two streams emerged (Deep Creek being one of them). On private property approximately 5 meters from fence and BLM land. Pond looked like it was once part of Deep Creek. There was some rolling topography, but slight. The pond had algae throughout, muddy bottom, and a lot of sedge. Heavily grazed. Idealistic for frogs both adult and larvae. Adult Treefrog and Spotted Frogs were found, and tadooles too.

Hurry Back Creek, 6/2/93 Site 68

On private land. Creek was carved out by heavy traffic of cattle. Not much vegetation, some willows. Water level was very low. Creek ran through very flat land.

Stoneman Creek #1. 6\3\93 Sites 69-79

Very lush area that followed Mud Flat Road. Topography was fairly flat. Deep pools and many beaver dams causing much flooding. Many adult spotted frogs were found. (eleven were found in a 30 meter area.). Treefrog adult and larvae were also found.

Pole Creek. 6 /9/ 93 Sites 101-107

Pole Creek was approximately 3 miles down from Mud flat Road (near jeep trail approximately 1 mile from Mud Flat bunkhouse). Pole Creek ran approximately 1-3 meters deep with several oxbows. At the beginning of survey, there was a wide meadow with high mud/dirt banks. Adult Spotted Frogs were found throughout. A portion of the stream had high canyon walls where creek narrowed and flowed faster. Eventually the Creek opened up into a basin with beaver dams. Near the end of the stream, before it flowed into Deep Creek, it turned very rocky with the water flowing very rapidly. No frogs were found at that point.

Deep Creek #2. 6\14\93 Site 108-113

Deep Creek ran fairly shallow with many oxbows located along the creek (this was the only place where Adult Spotted Frogs were found). Many of the oxbows were dried up or nearly dry. Several larvae were found in an oxbow that would be dried up by the end of the week. There was some evidence of grazing but not a lot. The topography was rolling hills. Half of the journey was in a wide open basin; the remaining was in a canyon. The vegetation consisted of willow, sedge, grasses, forbs. The bottom of the creek was mainly gravel, some rocks and some sand.

Drv Creek. 6/15/93 Sites 114-121

Dry Creek ran through a shallow U-shaped canyon. The vegetation around the stream was consistently made up of grass, sedge, and sage. The substrate varied from 100% mud to gravel and sand and also a stretch of rock. Evidence of grazing was heavy with a lot of disturbed banks. The stream also meandered and erosion of the outer corner of the turns was heavy with some cutouts reaching approximately two meters in height. Larvae were found in ponds not directly attached to the stream. One frog was seen to jump into the water from the bank. Although its identity could not be confirmed, it was likely a spotted frog.

Castle Creek, S.F., 6\16\93 Sites 122-123

No adults or larvae of either species were found this could be due to cold weather and rain. The Creek was fairly narrow, measuring 2 meters in width on the average. The banks were fairly steep and the willows were very dense making it difficult to stay near the waters' edge. There were few oxbows. The creek ran through a steep canyon.

Camas Creek. 6\21\93 Sites 124-129

Camas Creek was very similar to Dry Creek, it ran through a field that was mostly occupied by sage and rabbit brush, some junipers were present. Neither species of frods were found. The banks had signs of erosion and there was a fair amount of grazing. The substrate was mostly gravel, and the water had a red appearance. The creek split up many times creating large islands.

Castle Creek N. F .. 6\22\93 Sites 130-134

No Spotted Frogs were found, only one Adult Pacific Treefrog was found. The creek ran through a canyon. Vegetation consisted of willows, sedge, lots of grass, sagebrush and some junipers. There was evidence of grazing, but not heavy. There were few oxbows.

E. F. Shoofly Creek, 6/23/93 Sites 136-140

Where we entered, the canyon was very steep and the stream was 2 meters wide. The vegetation was extremely dense making it hard to pass. The substrate of the creek was mainly gravel and rock. The majority of the creek was a fast unning riffle. There were no oxbows until the last quarter mile in which we saw only a couple. Half way through, the canyon opened up and there was tall sage brush and very heavy grazing. The stream had hoof marks all along the bank. A small portion of the Creek had tall Aspen.

Unnamed. 6/23 - 6/28/93 Sites 141-149

Located 400 meters West from Mud Flat Camp; the spring ran through a lot of grasses, forbs, sedge, some willows and sagebrush. The topography was flat and open (meadow). In some areas, the Creek was approximately .5 meter in width which opened up into large pools of water approximately 6 meters wide and 1 meter deep. Treefrog tadpoles were found intermittently throughout and three Adult Spotted Frogs were found on banks, two were near willows.

Slack Creek. 6/29/93 Sites 149-151

An intermittent tributary, no frogs or tadpoles found. However, there were many young fish. Heavily grazed, a lot of grass and sedge (we were only on this transect for 200 meters).

Camel Creek. 6/29/93 152

Intermittent creek (water most the length). Vegetation--grass, sedge, forbs and willows. Treefrog tadpoles found, one Adult Spotted Frog was found. The topography was flat at first but became semi-rolling with cliffs reaching the waters' edge at times. Heavily grazed.

Pole Creek. 6/29/93 Sites 153-157

High cliffs on both sides, many forbs, willow and sedge. The Creek was very slow moving and had an algae reading of 3 (the highest amount). The Creek was

approximately 6 meters wide and approximately 16-35 centimeters deep. One Adult Spotted Frog was found.

Camas Creek. 6/30/93 Sites 158-161

The Creek was approximately 6 meters wide with a gravel bottom running through a steep canyon. There was a lot of vegetation and evidence of grazing. Only one Adult Spotted Frog was found. At some points, the water was moving very slowly resulting in algae.

CCC Spring, 7/1/93 Sites 162-163

The Creek was intermittent and dry for the most part. The topography was flat with some small rolling hills. Vegetation consisted of sedge, forbs, some grass, sage brush and willows. No frogs were found.

Poison Creek Trib #1. 7/6/93 Sites 164-165

A small, almost dried tributary between 13 centimeters and .5 centimeter wide. Gravel bottom. Heavy grazing ~3). Lot of sage and willows, some forbs. Topography: rolling hills. No frogs of either species, adult and larvae were seen.

Poison Creek, Trib #2, 7/6/93 sites 166-168

Much like Poison Creek, Trib #1. A little wider (approximately 1 meter), more vegetation i.e. willows and the topography was a little more steep. Again, no frogs of either species were found.

Camas Creek. 7/7/93 Sites 169-174

At the beginning of the hike, the topography was a large flat meadow. The creek was approximately 3-4 meters wide with gravel/sand bottom. Erosion was evident as the stream formed its own small canyon. Some grazing. The topography changed half way through. The canyon drew narrow and the vegetation became more dense. Large boulders were everywhere. No Spotted Frogs were found although we did see one Adult Treefrog and Treefrog tadpoles. There were also many garter snakes.

Birch Creek. 7/8/93 Sites 175-178

The stream started off at 1-2 meters wide; gravelly bottom and filled with stringy green algae. The stream had cut a small canyon 4-5 meters deep in the soft soil. The water was +25 centimeters deep and fairly fast moving. Further up, a man-made place was found that could be a complete dam if needed. It was right below a spring. This area was wide (5-6 meters) and swampy. Water was still shallow and there was evidence that cows used it often and recently. About 10 meters above this looked like a small, unkept beaver dam (water ran over it). It made a big pond 10 X 8 meters and the water was deep. It had about a 4 meter high bank. At the top of the pond was another dam. Above this the stream branched off at places winding through thick willow and rose bushes. It soon gave way to 1-2 meter wide shallow stream with its high bank and remained like this for the rest of the way. There were a few birch and cottonwood trees and some willow patches at the end. The majority of the vegetation was big sage bushes 5-6 feet high and dry rolling hills.

E.F. Shoofly Creek, 7/12/93 179-180

The creek flowed through a shallow valley. No amphibians were found although we did see a W. Whiptail and a Sagebrush Lizard. The vegetation was thick with 5-7 foot tall sagebrush, rabib fbursh, willow, birch, roses, grasses. The creek was approximately 2 meters wide and 15 centimeters deep. Substrate consisted primarily of sand and gravel and some rock. There was also a fair amount of alcae.

Battle Creek Drainage. 7/12/93 Sites 181-192

This side of the drainage almost all the creeks were dry. All had a lot of sagebrush, some grasses and forbs, and a lot of bare land. The exception was one creek which had a high salt content (alkaline) due to white on ground. All measured approximately 2 meters wide and had a gravel/sand substrate. Poison Creek, however; had a small amount of water flowing through and was extremely dense with willows, sedge, roses and grasses. Substrate was 50/50 gravel and rock. The creek was approximately 1 meter wide and flowed between two hills into a basin.

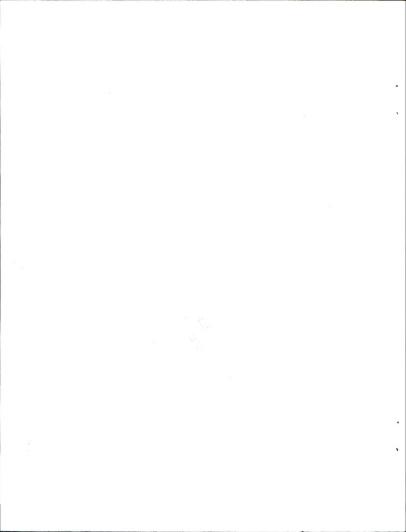
Nip and Tuck Creek, 7/13/93 Sites 195-197

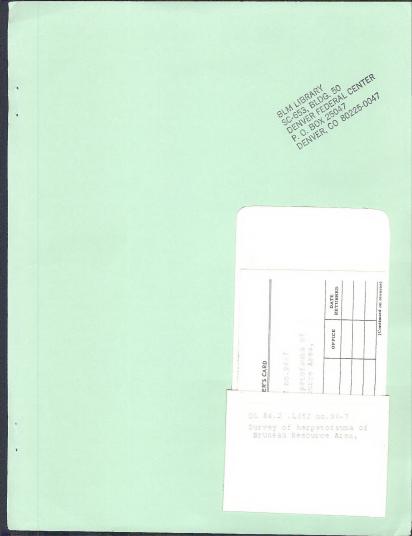
Where we began, the creek was in an open meadow that had been heavily grazed. The vegetation at that point was severely trampled or grazed upon (willows, sagebrush, some grasses and forbs). Approximately 1 meter from where we began, the vegetation grew more dense and the canyon was narrow. The creek was approximately 2-3 meters wide with occasional oxbows (no frogs were found). We saw two W. Fence Lizards. Eventually, walking along the water became too difficult because of dense vegetation.

Hackberry Reservoir, 7/13/93 Sites 193-194

Approximately 80 X 20 meters in diameter. Topography was a meadow with a built-up dam on two sides. The vegetation consisted largely of reeds and forbs and some sagebrush. The substrate was mainly sand and mud. Two Adult Spotted Frogs were found on the bank in the reeds. We saw heavy waterfowl-geese and ducks.

Stoneman Creek (2nd survey), 7/14/93 Sites 198-201


We chose to go back to Stoneman Creek again because we found so many Adult Spotted Frogs the first time and we were curious to find if they were still there or if, perhaps, we found them due to mating time. We did see a total of four Adult Spottad Frogs along Stoneman where previously, we had seen eleven per 400 meters. The creek had dried up some since we last surveyed, and vegetation was thicker. Many oxbows were dry where we had seen several Adult Spotted Frogs before. We did see an oxbow with Toad larvae which we had not seen before.


Deep Creek (2nd survey), 7/14/93 Sites 202-204

We also chose to look at Deep Creek for a second time. We found many Adult Spotted Frogs here during the first survey just as we did today. We found a total of sixteen Adult Spotted Frogs in 1 mile. The water level was much lower, the old oxbows were dried, but new ones were created. All but one frog was found on the bank, the other was in the water. The creek moved at a slower rate.

4

U.S. Department of the Interior Bureau of Land Management Idaho State Office 3380 Americana Terrace Boise, Idaho 83706 *

x.

BLM-ID-PT-94-021-4070